Factors that affect quantitative analysis by surface-enhanced resonance Raman scattering (SERRS) have been investigated using azobenzotriazol and reactive dyes. Preaggregation of the silver colloid was the most effective method to obtain repeatable and reproducible scattering. Aggregation by poly(l-lysine) or spermine provided better precision than aggregation by sodium chloride or nitric acid. Repeatable quantitative analysis was achieved with the azobenzotriazol dyes. A linear calibration graph was obtained over different concentration ranges below 10(-)(8) M, depending on the nature of the colloid. Calculations estimate that 10(-)(8) M is the concentration at which monolayer coverage of the dye on the silver colloid is achieved. Above 10(-)(8) M, there was only a minor increase in the scattering intensity from the azobenzotriazol dyes. In contrast, the reactive dyes did not give a response proportional to concentration over the range studied. The different responses obtained for the two types of dye are believed to be caused by differences in the nature of the interaction of the molecules with the silver surface. The conclusion reached is that control of the colloid preparation, aggregation process, and surface chemistry are essential for successful quantitative analysis of dyes on colloidal silver by SERRS.
Two systems have been compared for the on-line production of infrared spectra of compounds separated by high-performance liquid chromatography (HPLC). System 1 had a thermospray interface to evaporate the mobile-phase solvents and deposit the solutes onto a moving stainless steel belt, for direct analysis by reflection–absorption IR spectrometry. In system 2, the column effluent was split 1:6 and pumped through an ultrasonic nebulizer. The spray was desolvated at reduced pressure in a heated transfer tube and the solutes deposited onto a ZnSe window for direct analysis by transmission IR spectrometry. When system 1 was used for the analysis of reactive dyes, eluent containing ammonium acetate caused a large background spectrum, as a film of unknown composition was formed on the surface of the stainless steel belt. An alternative procedure, without ammonium acetate, was developed with a mixed-mode column containing C18 and cation exchange particles, but variable retention times were obtained. System 2 could be used satisfactorily with eluents containing ammonium acetate, and it produced dye spectra of better resolution than those obtained with system 1. When the dyes were examined under a microscope, the material on the ZnSe window was more uniform and more evenly distributed on a narrower track than were the deposits on the stainless steel belt. Consequently, the peak shape of the IR chromatograms was better with system 2, and a lower detection limit was achieved for reactive blue 74 (9 ng). When mixtures of the pesticides metolcarb and carbofuran were analyzed, a thermospray temperature of 196 °C was required to desolvate the effluent from the HPLC column in system 1. At this temperature, thermal degradation of the pesticides occurred, and no spectrum was recorded from the belt surface. However, with system 2, deposition of the pesticides was achieved at 90 °C, without degradation, and IR spectra/chromatograms were obtained. Overall, the study showed that the infrared chromatograph (IRC) was the more efficient and flexible interface for HPLC Fourier transform infrared (FT-IR) spectrometry.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.