Three studies were conducted to examine the effects of zinc concentration or source in diets of finishing beef steers. In Exp. 1, 108 (British x Continental) beef steers were supplemented with concentrations of added zinc (as ZnSO4) at 20, 100, or 200 mg/kg of dietary DM. No differences (P > 0.10) were noted among treatments for ADG or gain:feed for the 112-d finishing period. However, a linear (P < 0.10) decrease was noted in daily DMI with increasing zinc concentrations for the overall finishing period. No differences (P > 0.10) were noted in hot carcass weight; dressing percentage; longissimus muscle area; percentage of kidney, pelvic, and heart fat; or marbling score. There were, however, quadratic increases in s.c. fat thickness (P < 0.05) and yield grade (P < 0.01) with added zinc. In Exp. 2, 12 beef steers were used to examine effects of added dietary zinc on serum concentrations of cholesterol and fatty acid profiles. No differences (P > 0.10) were observed in cholesterol or fatty acids among the supplemental zinc levels. In Exp. 3, 84 Brangus- and Angus-sired steers were fed a steam-flaked corn-based diet containing 30 mg of supplemental zinc per kilogram of dietary DM from one of the following sources: 1) ZnSO4, 2) Zn amino acid complex, or 3) a zinc polysaccharide complex. No differences (P > 0.10) were noted for the overall 126-d trial for ADG, DMI, or gain:feed ratio. Percentage kidney, pelvic, and heart fat was increased (P < 0.10) in steers supplemented with ZnSO4 vs the average of Zn amino acid and Zn polysaccharide complexes. However, s.c. fat thickness was greater (P < 0.10) in steers supplemented with Zn amino acid and Zn polysaccharide complexes vs ZnSO4. Serum zinc concentration did not differ (P > 0.10) among zinc sources. Supplemental zinc concentration in finishing diets did not seem to influence feedlot performance and had a minimal impact on carcass quality. Either the organic or inorganic source can be included in finishing diets without affecting feedlot performance.
The objectives of this study were to compare 2 milk replacers containing only milk proteins with or without supplemental Met, and to compare a milk replacer containing hydrolyzed wheat protein at 4.5% of dry matter (DM) and supplemental Lys and Met against the 2 all-milk-protein formulas, by assessing their effect on the growth performance, efficiency, and plasma urea nitrogen of pre-weaning Holstein calves. Thus, 57 Holstein calves were allotted to the following 3 treatments: (1) a skim milk plus whey protein concentrate-based milk replacer (SMWP) containing about 2.6% Lys and 0.6% Met on a DM basis; (2) SMWP + M based on skim milk and whey proteins, containing about 2.6% Lys, and supplemental Met to reach 0.9% on a DM basis; and (3) a skim milk plus whey protein concentrate plus 4.5% of the DM as hydrolyzed wheat protein based milk replacer (HWP + LM) where the wheat protein replaced 50% of the whey protein concentrate, and also contained supplemental Lys and Met to match the profile of SMWP + M (i.e., Lys 2.6 and Met 0.9% on DM basis). No difference in any of the responses was observed by supplementing the milk protein based formula with Met or when hydrolyzed wheat protein was added to the formula. Results indicate that (1) a milk replacer based on skim milk protein and whey protein with a Lys concentration of ~2.6% does not benefit from Met supplementation, and (2) milk replacer containing 4.5% of the DM as hydrolyzed wheat protein and supplemented with Lys and Met can support the same growth performance as milk protein-based formulas.
The study was conducted with the objective of evaluating the nutrient content, fermentation characteristics, microbial counts, and ruminal degradability of two mixtures of Italian ryegrass (Lolium multiflorum Lam.) and winter cereal silages. Two mixtures (mixture A: Italian ryegrass, triticale, oats, wheat and barley; and mixture B: Italian ryegrass and oats) were wilted and ensiled in laboratory-scale silos without additives. At the end of 90 d fermentation mixture B silage had higher (p < .05) dry matter (DM), ether extract (EE), crude fibre (CF), neutral detergent fibre (NDF) and acid detergent fibre (ADF) contents than mixture A silage. The pH value of mixture B was higher (p < .05) than mixture A silage. Mixture A had higher lactate, acetate and ethanol contents than mixture B. However, mixture B had higher NH 3 -N (day 14) than mixture A silage. The mould and yeast count (Log 10 CFU g À1 ) was higher (p < .05) for mixture A than mixture B at opening day 7. The in situ incubation revealed that potentially degradable fraction (b) of DM, CP and NDF was 39.41%, 43.59%, 80.23% (mixture A) and 39.16%, 32.39%, 94.35% (mixture B). The effective protein degradability (EPD) at 0.08 rumen outflow rates was 67.26% (mixture A) and 67.19% (mixture B). These results suggest that with the proper stage of harvesting, Italian ryegrass and winter cereal mixtures were fermented well. This kind of mixtures can be ensiled without additives in the future. The high potentially degradable NDF and effective protein degradability implies that this mixture could be included successfully in high-yielding dairy cattle diets. HIGHLIGHTSItalian ryegrass and winter cereal mixtures are well preserved without additives and it saves the cost of additives for dairy farmers. The ensiled mixtures have high potentially degradable NDF and effective protein degradability, which improve dry matter intake, milk production and increase the net return of farm. The mixture forage can be double-cropped with corn for silage making, which can have both environmental and economic benefits if the ensiled mixture yields are enough to cover expenses.
Our objective was to measure and compare apparent ileal digestibility, standard ileal digestibility, and true ileal digestibility of crude protein (CP) and amino acids (AA) in milk replacers (MR) containing all milk proteins (WPC) or with 50% of the CP provided by an enzyme-treated soybean meal (ESBM). A T-cannula was placed in the ileum of 9 Holstein calves (8 males and 1 freemartin female) at approximately 15 d of age. After 2 wk postsurgery, calves were randomly assigned to a 3 × 3 replicated Latin square with 5-d periods. Calves were fed twice daily at a rate of 2% (dry matter) of body weight (1.25 kg/d on average), reconstituted to 15% solids, and adjusted weekly. No starter was offered to minimize rumen development. Digesta samples were collected continuously during 12 h on d 4 and 5 of each period. Basal endogenous losses of AA and CP were estimated by feeding an N-free MR to each calf during 1 period. Total endogenous losses (basal + specific; END total ) were estimated by multivariate regression of the chi-squared distances between digesta and reference protein AA profiles. Ileal digesta pH with the ESBM diet was lower than that with the WPC diet. According to the piecewise nonlinear model of pH fluctuation, digesta pH during ESBM decreased more slowly after feeding and reached its nadir later than with the WPC diet. Diet did not affect average daily gain, but calves on the ESBM diet showed a bigger increment of withers height and lower mean fecal scores. The basal endogenous losses of AA and CP were 13.9 ± 1.1 and 22.4 ± 1.1 g/kg of dry matter intake, respectively. The estimated END total of AA and CP was higher with ESBM than with WPC. Accordingly, apparent ileal digestibility and standard ileal digest-ibility of most AA, CP, and total AA were lower or tended to be lower with ESBM. However, true ileal digestibility did not differ between diets for CP and all AA except Ala and Ile, which were greater with WPC, and Arg, which tended to be greater with ESBM. In agreement with the estimated differences in END total , we found that flows of digesta DNA and crude mucin were greater with ESBM. Substitution of 50% of the protein from whey with enzymatically treated soybean meal did not affect major nutrient digestibility or calf growth and even improved fecal consistency. Adjusting digestibilities of CP and AA in MR by endogenous protein losses is crucial when comparing bioavailability of alternative proteins and milk proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.