At the end of the 1980s, it was clearly demonstrated that cells produce nitric oxide and that this gaseous molecule is involved in the regulation of the cardiovascular, immune and nervous systems, rather than simply being a toxic pollutant. In the CNS, nitric oxide has an array of functions, such as the regulation of synaptic plasticity, the sleep-wake cycle and hormone secretion. Particularly interesting is the role of nitric oxide as a Janus molecule in the cell death or survival mechanisms in brain cells. In fact, physiological amounts of this gas are neuroprotective, whereas higher concentrations are clearly neurotoxic.
Human endogenous retroviruses (HERVs) constitute 8% of the human genome and have been implicated in both health and disease. Increased HERV gene activity occurs in immunologically activated glia, although the consequences of HERV expression in the nervous system remain uncertain. Here, we report that the HERV-W encoded glycoprotein syncytin is upregulated in glial cells within acute demyelinating lesions of multiple sclerosis patients. Syncytin expression in astrocytes induced the release of redox reactants, which were cytotoxic to oligodendrocytes. Syncytin-mediated neuroinflammation and death of oligodendrocytes, with the ensuing neurobehavioral deficits, were prevented by the antioxidant ferulic acid in a mouse model of multiple sclerosis. Thus, syncytin's proinflammatory properties in the nervous system demonstrate a novel role for an endogenous retrovirus protein, which may be a target for therapeutic intervention.
Glutamate transporters are involved in the maintenance of synaptic glutamate concentrations. Because of its potential neurotoxicity, clearance of glutamate from the synaptic cleft may be critical for neuronal survival. Inhibition of glutamate uptake from the synapse has been implicated in several neurodegenerative disorders. In particular, glutamate uptake is inhibited in Alzheimer's disease (AD); however, the mechanism of decreased transporter activity is unknown. Oxidative damage in brain is implicated in models of neurodegeneration, as well as in AD. Glutamate transporters are inhibited by oxidative damage from reactive oxygen species and lipid peroxidation products such as 4‐hydroxy‐2‐nonenal (HNE). Therefore, we have investigated a possible connection between the oxidative damage and the decreased glutamate uptake known to occur in AD brain. Western blots of immunoprecipitated HNE‐immunoreactive proteins from the inferior parietal lobule of AD and control brains suggest that HNE is conjugated to GLT‐1 to a greater extent in the AD brain. A similar analysis of beta amyloid (Aβ)‐treated synaptosomes shows for the first time that Aβ1–42 also increases HNE conjugation to the glutamate transporter. Together, our data provide a possible link between the oxidative damage and neurodegeneration in AD, and supports the role of excitotoxicity in the pathogenesis of this disorder. Furthermore, our data suggests that Aβ may be a possible causative agent in this cascade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.