Asthma disproportionately affects inner-city, minority children in the U.S. Outdoor pollutant concentrations, including particulate matter (PM), are higher in inner-cities and contribute to childhood asthma morbidity. Although children spend the majority of time indoors, indoor PM exposures have been less extensively characterized. There is a public health imperative to characterize indoor sources of PM within this vulnerable population to enable effective intervention strategies. In the present study, we sought to identify determinants of indoor PM in homes of Baltimore inner-city pre-school children.Children ages 2-6 (n=300) who were predominantly African-American (90%) and from lower socioeconomic backgrounds were enrolled. Integrated PM 2.5 and PM 10 air sampling was conducted over a 3-day period in the children's bedrooms and at a central monitoring site while caregivers completed daily activity diaries. Homes of pre-school children in inner-city Baltimore had indoor PM concentrations that were twice as high as simultaneous outdoor concentrations. The mean indoor PM 2.5 and PM 10 concentrations were 39.5±34.5 μg/m 3 and 56.2±44.8 μg/m 3 , compared to the simultaneously measured ambient PM 2.5 and PM 10 (15.6±6.9 and 21.8±9.53 μg/m 3 , respectively). Common modifiable household activities, especially smoking and sweeping, contributed significantly to higher indoor PM, as did ambient PM concentrations. Open windows were associated with significantly lower indoor PM. Further investigation of the health effects of indoor PM exposure is warranted, as are studies to evaluate the efficacy of PM reduction strategies on asthma health of inner-city children.
BackgroundThe effect of indoor nitrogen dioxide concentrations on asthma morbidity among inner-city preschool children is uncertain.ObjectivesOur goal was to estimate the effect of indoor NO2 concentrations on asthma morbidity in an inner-city population while adjusting for other indoor pollutants.MethodsWe recruited 150 children (2–6 years of age) with physician-diagnosed asthma from inner-city Baltimore, Maryland. Indoor air was monitored over a 72-hr period in the children’s bedrooms at baseline and 3 and 6 months. At each visit, the child’s caregiver completed a questionnaire assessing asthma symptoms over the previous 2 weeks and recent health care utilization.ResultsChildren were 58% male, 91% African American, and 42% from households with annual income < $25,000; 63% had persistent asthma symptoms. The mean (± SD) in-home NO2 concentration was 30.0 ± 33.7 (range, 2.9–394.0) ppb. The presence of a gas stove and the use of a space heater or oven/stove for heat were independently associated with higher NO2 concentrations. Each 20-ppb increase in NO2 exposure was associated significantly with an increase in the number of days with limited speech [incidence rate ratio (IRR) = 1.15; 95% confidence interval (CI), 1.05–1.25], cough (IRR = 1.10; 95% CI, 1.02–1.18), and nocturnal symptoms (IRR = 1.09; 95% CI, 1.02–1.16), after adjustment for potential confounders. NO2 concentrations were not associated with increased health care utilization.ConclusionsHigher indoor NO2 concentrations were associated with increased asthma symptoms in preschool inner-city children. Interventions aimed at lowering NO2 concentrations in inner-city homes may reduce asthma morbidity in this vulnerable population.
BackgroundAlthough outdoor particulate matter (PM) has been linked to mortality and asthma morbidity, the impact of indoor PM on asthma has not been well established.ObjectiveThis study was designed to investigate the effect of in-home PM on asthma morbidity.MethodsFor a cohort of 150 asthmatic children (2–6 years of age) from Baltimore, Maryland, a technician deployed environmental monitoring equipment in the children’s bedrooms for 3-day intervals at baseline and at 3 and 6 months. Caregivers completed questionnaires and daily diaries during air sampling. Longitudinal data analyses included regression models with generalized estimating equations.ResultsChildren were primarily African Americans (91%) from lower socioeconomic backgrounds and spent most of their time in the home. Mean (± SD) indoor PM2.5–10 (PM with aerodynamic diameter 2.5–10 μm) and PM2.5 (aerodynamic diameter < 2.5 μm) concentrations were 17.4 ± 21.0 and 40.3 ± 35.4 μg/m3. In adjusted models, 10-μg/m3 increases in indoor PM2.5–10 and PM2.5 were associated with increased incidences of asthma symptoms: 6% [95% confidence interval (CI), 1 to 12%] and 3% (95% CI, –1 to 7%), respectively; symptoms causing children to slow down: 8% (95% CI, 2 to 14%) and 4% (95% CI, 0 to 9%), respectively; nocturnal symptoms: 8% (95% CI, 1 to 14%) and 6% (95% CI, 1 to 10%), respectively; wheezing that limited speech: 11% (95% CI, 3 to 19%) and 7% (95% CI, 0 to 14%), respectively; and use of rescue medication: 6% (95% CI, 1 to 10%) and 4% (95% CI, 1 to 8%), respectively. Increases of 10 μg/m3 in indoor and ambient PM2.5 were associated with 7% (95% CI, 2 to 11%) and 26% (95% CI, 1 to 52%) increases in exercise-related symptoms, respectively.ConclusionsAmong preschool asthmatic children in Baltimore, increases in in-home PM2.5–10 and PM2.5 were associated with respiratory symptoms and rescue medication use. Increases in in-home and ambient PM2.5 were associated with exercise-related symptoms. Although reducing PM outdoors may decrease asthma morbidity, reducing PM indoors, especially in homes of inner-city children, may lead to improved asthma health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.