Zirconia is currently used as a framework material for posterior all-ceramic bridges. While the majority of research efforts have focused on the microstructure and corresponding mechanical properties of this material, clinical fractures appear to be largely associated with the appliance geometry.
Objective
The objective of this study was to estimate the maximum stress concentration posed by the connector geometry and to provide adjusted estimates of the minimum connector diameter that is required for achieving 20 years of function.
Methods
A simple quantitative description of the connector geometry in an all-ceramic 4-unit bridge design is used with published stress concentration factor charts to quantify the degree of stress concentration.
Results
The magnitude of stress concentration estimated for clinically relevant connector geometries ranges from 2 to 3. Using previously published recommendations for connector designs, adjusted estimates for the minimum connector diameter required to achieve 20 years of clinical function are presented.
Significance
To prevent clinical fractures the minimum connector diameter in multi-unit bridges designs must account for the loads incurred during function and the extent of stress concentration posed by the connector geometry.
ABSTRACT-In this paper, the fatigue and fracture properties of bovine dentin are evaluated using in vitro experimental analyses. Double cantilever beam (DCB) specimens were prepared from bovine maxillary molars and subjected to zeroto-tension cyclic loads. The fatigue crack growth rate was evaluated as a function of the dentin tubule orientation using the Paris law. Wedge-loaded DCB specimens were also prepared and subjected to monotonic opening loads. Moiré interferometry was used to acquire the in-plane displacement field during stable crack growth, and the instantaneous wedge load and crack length were acquired to evaluate the crack growth resistance and crack tip opening displacement (CTOD) with crack extension. The rate of fatigue crack growth was generally larger for crack propagation occurring perpendicular to the dentin tubules. The Moiré fringe fields documented during monotonic crack growth exhibited non-linear deformation occurring within a confined region adjacent to the crack tip. Both the wedge load and CTOD response provided evidence that a fracture process zone contributes to energy dissipation during crack extension and that dentin exhibits a rising R-curve behavior. Results from this preliminary investigation are being used as a guide for an evaluation of the fatigue and fracture properties of human dentin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.