This work discusses the relationships between the initial composition of the CF4 + C4F8 + Ar gas mixture, gas-phase characteristics and heterogeneous process kinetics under the condition of low-pressure inductively coupled plasma. The goals were to investigate how the CF4/C4F8 mixing ratio influences internal plasma parameters (electron temperature, electron density and ion bombardment energy) and kinetics of plasma active species as well as to analyze how the changes in above parameters may influence the dry etching characteristics, such as etching rates and selectivities. The investigation was carried out using the combination of plasma diagnostics by double Langmuir probes and 0-dimensional plasma modeling. Both experiments and calculations were carried out at constant gas pressure (10 mTorr), input power (800 W) and bias power (150 W) while the CF4/C4F8 mixing ratio was varied through the partial flow rates for corresponding gases. It was shown that the substitution of CF4 for C4F8 in the CF4+C4F8+Ar feed gas lowers F atom formation rates and causes the decreasing F atom flux to the treated surface due to decreasing their volume density. It was proposed that an increase in the densities and fluxes of unsaturated CFx (x=1,2) radicals toward C4F8-rich plasmas at the nearly constant ion energy flux (i.e. at the nearly constant efficiency of ion bombardment) causes a decrease in the effective reaction probability for F atoms through the increasing thickness of the fluorocarbon polymer film on the treated surface.Forcitation:Efremov A.M., Murin D.B., Kwon K.H. Plasma parameters and active species kinetics CF4+C4F8+Ar gas mixture. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N4-5. P. 31-36
In this work, we performed the combined (experimental and model-based) study of gas-phase plasma characteristics and etching kinetics for both Si and SiO2 in the C4F8 + Ar gas mixture. The experiments were carried out at constant total gas pressure (p = 6 mTorr), input power (W = 900 W) and bias power (Wdc = 200 W) while the C4F8/Ar mixing ratio was varied in the range of 0–75% Ar. The data on internal plasma parameters, plasma chemistry as well as the steady-state plasma composition were obtained by both Langmuir probe diagnostics and 0-dimensional plasma modeling. The etching mechanisms were investigated through the analysis of relationships between the measured etching rates and the model-predicted fluxes of active species (F atoms, polymerizing CFx radicals and positive ions). It was found that, under the given set of experimental conditions, the Si and SiO2 etching process 1) appears in the steady-state etching regime; 2) exhibits the features of the ion-assisted chemical reactions in the neutral-flux-limited mode; and 3) is influenced by the fluorocarbon polymer film thickness. It was shown that the influence of input process parameters on the effective probability of chemical reaction between Si, SiO2 and fluorine atoms may be adequately characterized by the fluorocarbon radicals/fluorine atoms and fluorocarbon radicals/ion energy flux ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.