The already available comprehensive genome sequence information of model crops along with the transcriptomic resource from other crops provides an excellent opportunity for comparative genome analysis. We studied the synteny between each of the four major sorghum staygreen quantitative trait loci (QTL) regions with that in the rice genome and attempted to increase marker density around the QTL with genic-microsatellites from the sorghum transcriptomic resource using the rice genome as template. For each of the sorghum QTL regions, the reported RFLP markers were compiled, used for sequence similarity searches against the rice genome which identified syntenous regions on rice chromosome 1 for Stg1 and Stg2 QTL, on chromosome 9 for Stg3 QTL, and on chromosome 11 for Stg4 QTL. Using the Gramene genome browsing tool, 869 non-redundant sorghum expressed sequence tags (ESTs) were selected and 50 genic-microsatellites (18, 12, 15, and 5, for Stg1, Stg2, Stg3, and Stg4 QTL, respectively) could be developed. We could experimentally establish synteny of the Stg1, Stg2, Stg3, and Stg4 QTL regions with that of the rice genome by mapping ten polymorphic genic-microsatellite markers (20%) to the positions of the staygreen QTL. The simple strategy demonstrated in the present study could readily be extrapolated to other cereals of the Poaceae family. The markers developed in this study provide a basis for the isolation of genes underling these QTL using an association study or map-based gene isolation approach, and create an additional option for MAS of the staygreen trait in sorghum.
Selecting parents of diverse genetic base with contrasting phenotype is an important step in developing mapping populations for quantitative trait loci (QTL) detection and marker-assisted selection. We studied genetic diversity in 31 sorghum parents using 413 sorghum simple sequence repeats (SSR) markers. The polymorphism information content (PIC), a measure of gene diversity, varied from 0 to 0.92 with an average of 0.53 and was significantly correlated with number of alleles. The primers IS10215, IS10270 and IS10333 could differentiate all the 31 lines conclusively. Clustering analysis based on the genetic dissimilarity grouped the 31 parents into eight clusters and grouping was in good agreement with pedigree, race and geographic origin. Diverse pairs of sorghum parents were identified with contrast phenotype for various biotic and abiotic stresses with higher genetic diversity for developing recombinant inbred line (RIL) mapping populations to identify QTLs/genes for important traits in sorghum. One of the mapping populations resulted in the identification of QTLs for resistance to sorghum shoot fly and these QTL results were validated in a second mapping population.
Evaluation of a set of 10 F 1 hybrids along with their female (27A and 7A) and male parents (C 43, RS 673, RS 627, CB 26, and CB 29) for grain yield and its component traits revealed that grain yield/plant followed by panicle weight, primary branches/panicle, and 100-seed weight exhibited high levels of heterosis. Eight hybrids exhibited 50% or more mid-parent heterosis for grain yield/plant, of which, one hybrid (27A × RS673) recorded heterobeltiosis above 50% (73.61%). Differential display analysis generated about 2995 reproducible transcripts, which were categorized as UPF 1 -expressed in any one of the parents and F 1 (10.53-14.76%), BPnF 1 -expressed in both parents but not in F 1 (4.56-11.44%), UPnF 1 -expressed in either of the parents and not in F 1 (17.95-27.40%), F 1 nBP-expressed only in F 1 but not in either of the parents (14.39-20.54%), and UET-expressed in both parents and F 1 (34.52-42.43%). A comparison between high and low heterotic hybrids revealed that the proportions of UPF 1 and F 1 nBP transcript patterns were much higher in the former (21.31% and 45.24%) as compared to the latter (16.67% and 32.14%) at the booting and flowering stage, respectively, indicating the role of over-dominance and dominance in the manifestation of grain yield heterosis. Significant positive correlations were observed for differential transcript patterns with mid-parent and better-parent heterosis for the components of grain yield such as primary branches (0.63 and 0.61 at p < 0.01) and 100-seed weight (0.64 and 0.52 at p < 0.01). Cloning and sequence analysis of 16 transcripts that were differentially expressed in hybrids and their parental lines revealed that they code for genes involved in basic cellular processes, cellulose biosynthesis, and assimilate partitioning between various organs and allocation between various pathways, pyrimidine, and polyamine biosynthesis, enhancing ATP production and regulation of plant growth and development.
Amrasca biguttula biguttula (Ishida), the cotton leafhopper, is a polyphagous insect pest of Asia and Southeast Asian countries. We sequenced a mitochondrial COI gene fragment from 67 individuals of cotton leafhopper collected from 7 major cotton growing states of North, Central, and South India. Genetic divergence analysis of leaf hopper population across India confirmed the presence of single species. Thirty haplotypes, in total, were determined across different regions of India. While population from North India was dominated by single haplotype, the south and central Indian populations show dispersion of different haplotypes across the region. The neutrality test rejection for the north Indian population also suggests population expansion. The genetic differentiation and gene flow analysis together confirmed the phylogeographic structure of the A. biguttula biguttula Ishida as isolated by distance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.