The ‘iron bacteria’ are a collection of morphologically and phylogenetically heterogeneous prokaryotes. They include some of the first micro-organisms to be observed and described, and continue to be the subject of a considerable body of fundamental and applied microbiological research. While species of iron-oxidizing bacteria can be found in many different phyla, most are affiliated with the Proteobacteria. The latter can be subdivided into four main physiological groups: (i) acidophilic, aerobic iron oxidizers; (ii) neutrophilic, aerobic iron oxidizers; (iii) neutrophilic, anaerobic (nitrate-dependent) iron oxidizers; and (iv) anaerobic photosynthetic iron oxidizers. Some species (mostly acidophiles) can reduce ferric iron as well as oxidize ferrous iron, depending on prevailing environmental conditions. This review describes what is currently known about the phylogenetic and physiological diversity of the iron-oxidizing proteobacteria, their significance in the environment (on the global and micro scales), and their increasing importance in biotechnology.
Biomining, the use of micro-organisms to recover precious and base metals from mineral ores and concentrates, has developed into a successful and expanding area of biotechnology. While careful considerations are made in the design and engineering of biomining operations, microbiological aspects have been subjected to far less scrutiny and control. Biomining processes employ microbial consortia that are dominated by acidophilic, autotrophic iron-or sulfur-oxidizing prokaryotes. Mineral biooxidation takes place in highly aerated, continuous-flow, stirred-tank reactors or in irrigated dump or heap reactors, both of which provide an open, non-sterile environment. Continuous-flow, stirred tanks are characterized by homogeneous and constant growth conditions where the selection is for rapid growth, and consequently tank consortia tend to be dominated by two or three species of micro-organisms. In contrast, heap reactors provide highly heterogeneous growth environments that change with the age of the heap, and these tend to be colonized by a much greater variety of micro-organisms. Heap micro-organisms grow as biofilms that are not subject to washout and the major challenge is to provide sufficient biodiversity for optimum performance throughout the life of a heap. This review discusses theoretical and pragmatic aspects of assembling microbial consortia to process different mineral ores and concentrates, and the challenges for using constructed consortia in non-sterile industrial-scale operations.
Microbial life in extremely low pH (<3) natural and man‐made environments may be considerably diverse. Prokaryotic acidophiles (eubacteria and archaea) have been the focus of much of the research activity in this area, primarily because of the importance of these microorganisms in biotechnology (predominantly the commercial biological processing of metal ores) and in environmental pollution (genesis of ‘acid mine drainage’); however, obligately acidophilic eukaryotes (fungi, yeasts, algae and protozoa) are also known, and may form stable microbial communities with prokaryotes, particularly in lower temperature (<35°C) environments. Primary production in acidophilic environments is mediated by chemolitho‐autotrophic prokaryotes (iron and sulfur oxidisers), and may be supplemented by phototrophic acidophiles (predominantly eukaryotic microalgae) in illuminated sites. The most thermophilic acidophiles are archaea (Crenarchaeota) whilst in moderately thermal (40–60°C) acidic environments archaea (Euryarchaeota) and bacteria (mostly Gram‐positives) may co‐exist. Lower temperature (mesophilic) extremely acidic environments tend to be dominated by Gram‐negative bacteria, and there is recent evidence that mineral oxidation may be accelerated by acidophilic bacteria at very low (ca. 0°C) environments. Whilst most acidophiles have conventionally been considered to be obligately aerobic, there is increasing evidence that many isolates are facultative anaerobes, and are able to couple the oxidation of organic or inorganic electron donors to the reduction of ferric iron. A variety of interactions have been demonstrated to occur between acidophilic microorganisms, as in other environments; these include competition, predation, mutualism and synergy. Mixed cultures of acidophiles are frequently more robust and efficient (e.g. in oxidising sulfide minerals) than corresponding pure cultures. In view of the continuing expansion of microbial mineral processing (‘biomining’) as a cost‐effective and environmentally sensitive method of metal extraction, and the ongoing concern of pollution from abandoned mine sites, acidophilic microbiology will continue to be of considerable research interest well into the new millennium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.