DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
This work addresses the analysis and validation of modular CHP specifications for asynchronous circuits, using formalisms and tools coming from the field of distributed software. CHP specifications are translated into an intermediate format (IF) based on communicating extended finite state machines. They are then validated using the IF environment, which provides model checking and bi-simulation tools.
Abstract. We present a new diagnostic algorithm, based on backward-propagation, for localising design errors in combinational logic circuits. Three hypotheses are considered, that cover all single gate replacement and insertion errors. Diagnosis-oriented test patterns are generated in order to rapidly reduce the suspected area where the error lies. The originality of our method is the use of patterns which do not detect the error, in addition to detecting patterns. A theorem shows that, in favourable cases, only two patterns suffice to get a correction. We have implemented the test generation and diagnosis algorithms. Results obtained on benchmarks show that the error is always found, after the application of a small number of test patterns, with an execution time proportional to the circuit size.
ISBN : 0-7695-2773-6Networks on Chip are emerging as a promising solution for the design of complex Systems on a Chip, to interconnect manufactured IP cores, and the need to formally guarantee their correctness is crucial. In a NoC centered design, the individual IP's are considered already validated. This paper addresses the validation of the communication infrastructure. A generic formal model for NoC's has been developed and implemented in the ACL2 theorem prover. As an application, the HERMES network has been formalized in this model, and we show that both formal proofs and simulation experiments can be performed in ACL2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.