We report magnetic, dielectric, and magnetodielectric responses of the pure monoclinic bulk phase of partially disordered La2NiMnO6, exhibiting a spectrum of unusual properties and establish that this compound is an intrinsically multiglass system with a large magnetodielectric coupling (8%-20%) over a wide range of temperatures (150-300 K). Specifically, our results establish a unique way to obtain colossal magnetodielectricity, independent of any striction effects, by engineering the asymmetric hopping contribution to the dielectric constant via the tuning of the relative-spin orientations between neighboring magnetic ions in a transition-metal oxide system. We discuss the role of antisite (Ni-Mn) disorder in emergence of these unusual properties.
Insertion of just a few impurity atoms in a host semiconductor nanocrystal can drastically alter its phase, shape, and physical properties. Such doped nanomaterials now constitute an important class of optical materials that can provide efficient, stable, and tunable dopant emission in visible and NIR spectral windows. Selecting proper dopants and inserting them in appropriate hosts can generate many new series of such doped nanocrystals with several unique and attractive properties in order to meet current challenges in the versatile field of luminescent materials. However, the synthesis of such doped nanomaterials with a specific dopant in a predetermined host at a desired site leading to targeted optical properties requires fundamental understanding of both the doping process as well as the resulting photophysical properties. Summarizing up to date literature reports, in this Perspective we discuss important advances in synthesis methods and in-depth understanding of the optical properties, with an emphasis on the most widely investigated Mn-doped semiconductor nanocrystals.
The structural, transport, magnetic and optical properties of the double perovskite A2CrWO6 with A = Sr, Ba, Ca have been studied. By varying the alkaline earth ion on the A site, the influence of steric effects on the Curie temperature TC and the saturation magnetization has been determined. A maximum TC = 458 K was found for Sr2CrWO6 having an almost undistorted perovskite structure with a tolerance factor f ≃ 1. For Ca2CrWO6 and Ba2CrWO6 structural changes result in a strong reduction of TC. Our study strongly suggests that for the double perovskites in general an optimum TC is achieved only for f ≃ 1, that is, for an undistorted perovskite structure. Electron doping in Sr2CrWO6 by a partial substitution of Sr 2+ by La 3+ was found to reduce both TC and the saturation magnetization Ms. The reduction of Ms could be attributed both to band structure effects and the Cr/W antisites induced by doping. Band structure calculations for Sr2CrWO6 predict an energy gap in the spin-up band, but a finite density of states for the spin-down band. The predictions of the band structure calculation are consistent with our optical measurements. Our experimental results support the presence of a kinetic energy driven mechanism in A2CrWO6, where ferromagnetism is stabilized by a hybridization of states of the nonmagnetic W-site positioned in between the high spin Cr-sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.