ZrB2 particles were preset to the C-AlSi interface to improve oxidation resistance of C/C preform and adjust the microstructure of the interpenetrated C/C-AlSi composite prepared through pressure infiltration of eutectic AlSi into a fiber fabric based porous C/C skeleton. Micro-morphology investigations suggested that the AlSi textures were changed from dendritic to petals-like state, and the nano to micro-scale ZrB2 particles were dispersed into AlSi and affected the distribution of Al and Si nearby carbon. Tests demonstrated that C/C-AlSi have slight lower density and thermal expansion coefficient, and higher original compressive strength, while C/C-ZrB2-AlSi composites presented an outstanding strength retention rate after thermal shock. Fracture and micro-morphology indicated that the influence of the preset ZrB2 to the interface of carbon and alloy greatly affected the generation and propagation of cracks, which determined the diverse compression behaviors of the composites before and after thermal shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.