Gas Metal Arc Welding is a process in which the source of heat is an arc format between consumable metal electrode and the work piece with an externally supplied gaseous shield of gas either inert such as argon, helium. This experimental study aims at optimizing various Gas Metal Arc welding parameters including welding voltage, welding current, welding speed and nozzle to plate distance (NPD) by developing a mathematical model for sound weld deposit area of a mild steel specimen. Factorial design approach has been applied for finding the relationship between the various process parameters and weld deposit area. The study revealed that the welding voltage and NPD varies directly with weld deposit area and inverse relationship is found between welding current and speed with weld deposit area.
Gas Metal Arc Welding (GMAW) is a welding process where an electrode wire is continuously fed from an automatic wire feeder through a conduit and welding gun to the base metal, where a weld pool is created. The formation of droplet and transfer of droplet are governed by the conservation equations. This study on GMAW aims to simulate transient behavior of welding arc and shielding gas flow. Computational Fluid Dynamics (CFD) is used as a tool to understand multifaceted physics involved in GMAW process. A two dimensional axisymmetric model is prepared to reduce computational time. The heat transfer and fluid flow in the arc column were studied based on the transient distributions of velocity, turbulence, voltage, current density, and temperature. An interactive coupling between welding arc, plasma, current and temperature were considered. The assumed steady state and laminar gas flow in traditional models studied so for does not reflect the real distributions in the welding process. Hence influence of the welding arc on the shielding gas flow and vice versa was taken up for study. From the study it is found that as the arc is struck, the shielding gas is accelerated towards axis. When the plasma reaches towards workpiece, axial momentum of gases is changed to radial momentum and flows away from the workpiece. The shielding gas also carries current from electrode to workpiece which helps in reducing spatter of the arc and hence concentrated arc is obtained
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.