The objective of surfactant formulation design is to achieve ultra-low interfacial tension (IFT) with the oil in place in reservoir conditions. Several parameters have to be investigated, the presence of dissolved gas in crude oil can greatly impact the surfactant/brine/crude oil microemulsion phase behavior and omitting it may degrade the formulation efficiency. We propose an experimental investigation of optimal salinity evolution as a function of live oil compositions and conditions varying the pressure independently to the gas to oil ratio (GOR), i.e. the amount of gas dissolved in crude oil. A specific High Pressure - High Temperature (HPHT) sapphire cell with a mobile piston is used to separately study the impact on the formulation optimal salinity of: (i) the GOR by adding different amounts of C1 to C5 n-alkanes at the corresponding saturation pressure; and (ii) the pressure cell – up to 500 bar – by varying the cell volume (without changing the live crude oil composition). Experiments were performed at 40°C and at the saturation pressure or above. Using the HPHT sapphire cell we show that GOR variations up to 135 Sm3/m3 induce important modifications of the {surfactant/brine/oil} microemulsion phase behavior. In the case of the studied fluid, experimental data indicate that the optimal salinity of the {brine/surfactant/oil system} decreases when increasing the amount of gas dissolved in the live crude oil. As a consequence, the equivalent alkane carbon number (EACN) of the live crude oil strongly depends on the gas to oil ratio. We demonstrate hereafter that the cell pressure– for a fixed composition (i.e. fixed GOR) –impacts neither the formation nor the stability of the microemulsion. Furthermore, preliminary results suggest that the composition of the dissolved gas has a slight effect on the microemulsion phase behavior. In this work, using a specific HPHT sapphire cell, we are able to dissociate the impact of the amount of added gas from the impact of the cell pressure and to consider pressures up to 500 bar. Whereas the pressure alone has a negligible influence on the surfactant/brine/oil microemulsion phase behavior, the dissolution of gases in crude oil leads to a decrease of the optimal salinity and a variation of live crude oil EACN.
Résumé -Solubilité et coefficient de diffusion du sulfure d'hydrogène dans le polyéthylène glycol 400 de 100 à 140 ºC -La limitation des rejets de gaz à effet de serre et de gaz acides, comme le sulfure d'hydrogène, est désormais une préoccupation majeure lors de la conception de procédés industriels. Dans ce contexte, Clauspol ® est un procédé de traitement des gaz de queue du Claus qui répond à ce besoin en atteignant des taux de récupération en soufre élevés. Il consiste à convertir chimiquement H 2 S et SO 2 en soufre élémentaire dans un solvant composé de polyéthylène glycol 400. L'optimisation de ce procédé requiert une connaissance précise de la solubilité et de la diffusivité des gaz dans ce solvant. Ainsi, ce travail présente dans le cas de H 2 S des mesures expérimentales de ces grandeurs et leur modélisation dans les conditions opératoires du procédé. Les données de solubilité sont modélisées avec l'équation d'état de Sanchez-Lacombe avec un simple coefficient d'interaction binaire indépendant de la température. Les coefficients de diffusion sont déterminés en appliquant le modèle Infinite-Acting sur la courbe expérimentale de la chute de pression. Ils apparaissent être inversement proportionnels à la viscosité du solvant. Abstract -Solubility and Diffusion Coefficient of Hydrogen Sulphide in Polyethylene Glycol 400 from 100 to 140°C -The limitation of greenhouse and sour gas emissions in the atmosphere, such as hydrogen sulphide, is nowadays a major preoccupation in industrial processes. In this context, the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.