Aims. Thanks to the high angular resolution, sensitivity, image fidelity, and frequency coverage of ALMA, we aim to improve our understanding of star formation. One of the breakthroughs expected from ALMA, which is the basis of our Cycle 5 ALMA-IMF Large Program, is the question of the origin of the initial mass function (IMF) of stars. Here we present the ALMA-IMF protocluster selection, first results, and scientific prospects. Methods. ALMA-IMF imaged a total noncontiguous area of ~53 pc2, covering extreme, nearby protoclusters of the Milky Way. We observed 15 massive (2.5 −33 × 103 M⊙), nearby (2−5.5 kpc) protoclusters that were selected to span relevant early protocluster evolutionary stages. Our 1.3 and 3 mm observations provide continuum images that are homogeneously sensitive to point-like cores with masses of ~0.2 M⊙ and ~0.6 M⊙, respectively, with a matched spatial resolution of ~2000 au across the sample at both wavelengths. Moreover, with the broad spectral coverage provided by ALMA, we detect lines that probe the ionized and molecular gas, as well as complex molecules. Taken together, these data probe the protocluster structure, kinematics, chemistry, and feedback over scales from clouds to filaments to cores. Results. We classify ALMA-IMF protoclusters as Young (six protoclusters), Intermediate (five protoclusters), or Evolved (four proto-clusters) based on the amount of dense gas in the cloud that has potentially been impacted by H II region(s). The ALMA-IMF catalog contains ~700 cores that span a mass range of ~0.15 M⊙ to ~250 M⊙ at a typical size of ~2100 au. We show that this core sample has no significant distance bias and can be used to build core mass functions (CMFs) at similar physical scales. Significant gas motions, which we highlight here in the G353.41 region, are traced down to core scales and can be used to look for inflowing gas streamers and to quantify the impact of the possible associated core mass growth on the shape of the CMF with time. Our first analysis does not reveal any significant evolution of the matter concentration from clouds to cores (i.e., from 1 pc to 0.01 pc scales) or from the youngest to more evolved protoclusters, indicating that cloud dynamical evolution and stellar feedback have for the moment only had a slight effect on the structure of high-density gas in our sample. Furthermore, the first-look analysis of the line richness toward bright cores indicates that the survey encompasses several tens of hot cores, of which we highlight the most massive in the G351.77 cloud. Their homogeneous characterization can be used to constrain the emerging molecular complexity in protostars of high to intermediate masses. Conclusions. The ALMA-IMF Large Program is uniquely designed to transform our understanding of the IMF origin, taking the effects of cloud characteristics and evolution into account. It will provide the community with an unprecedented database with a high legacy value for protocluster clouds, filaments, cores, hot cores, outflows, inflows, and stellar clusters studies.
We present the first data release of the ALMA-IMF Large Program, which covers the 12m-array continuum calibration and imaging. The ALMA-IMF Large Program is a survey of fifteen dense molecular cloud regions spanning a range of evolutionary stages that aims to measure the core mass function. We describe the data acquisition and calibration done by the Atacama Large Millimeter/submillimeter Array (ALMA) observatory and the subsequent calibration and imaging we performed. The image products are combinations of multiple 12 m array configurations created from a selection of the observed bandwidth using multi-term, multi-frequency synthesis imaging and deconvolution. The data products are self-calibrated and exhibit substantial noise improvements over the images produced from the delivered data. We compare different choices of continuum selection, calibration parameters, and image weighting parameters, demonstrating the utility and necessity of our additional processing work. Two variants of continuum selection are used and will be distributed: the “best-sensitivity” (bsens) data, which include the full bandwidth, including bright emission lines that contaminate the continuum, and “cleanest” (cleanest), which select portions of the spectrum that are unaffected by line emission. We present a preliminary analysis of the spectral indices of the continuum data, showing that the ALMA products are able to clearly distinguish free-free emission from dust emission, and that in some cases we are able to identify optically thick emission sources. The data products are made public with this release.
Context. Many classes of active galactic nuclei (AGN) have been defined entirely through optical wavelengths, while the X-ray spectra have been very useful to investigate their inner regions. However, optical and X-ray results show many discrepancies that have not been fully understood yet. Aims. The main purpose of the present paper is to study the synapses (i.e., connections) between X-ray and optical AGN classifications.Methods. For the first time, the newly implemented task allowed us to analyse broad band X-ray spectra of a sample of emission-line nuclei without any prior spectral fitting. Our sample comprises 162 spectra observed with XMM-Newton/pn of 90 local emission line nuclei in the Palomar sample. It includes, from the optical point of view, starbursts (SB), transition objects (T2), low-ionisation nuclear emission line regions (L1.8 and L2), and Seyfert nuclei (S1, S1.8, and S2). We used artificial neural networks (ANNs) to study the connection between X-ray spectra and optical classes. Results. Among the training classes, the ANNs are 90% efficient at classifying the S1, S1.8, and SB classes. The S1 and S1.8 classes show a negligible SB-like component contribution with a wide range of contributions from S1-and S1.8-like components. We suggest that this broad range of values is related to the high degree of obscuration in the X-ray regime. When including all the objects in our sample, the S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN activity in the literature), and SB classes have similar average X-ray spectra, but these average spectra can be distinguished from class to class. The S2 (L1.8) class is linked to the S1.8 (S1) class with a larger SB-like component than the S1.8 (S1) class. The L2, T2, and SB-AGN classes constitute a class in the X-rays similar to the S2 class, albeit with larger portions of SB-like component. We argue that this SB-like component might come from the contribution of the host galaxy emission to the X-rays, which is high when the AGN is weak. Up to 80% of the emission line nuclei and, on average, all the optical classes included in our sample show a significant fraction of S1-like or S1.8-like components. Thus, an AGN-like component seems to be present in the vast majority of the emission line nuclei in our sample. Conclusions. The ANN trained in this paper is not only useful for studying the synergies between the optical and X-ray classifications, but might also be used to infer optical properties from X-ray spectra in surveys like eRosita.
The Gaia DR2 catalog is the best source of stellar astrometric and photometric data available today. The history of the Milky Way galaxy is written in stone in this data set. Parallaxes and photometry tell us where the stars are today, when were they formed, and with what chemical content, i.e. their star formation history (SFH). We develop a Bayesian hierarchical model suited to reconstruct the SFH of a resolved stellar population. We study the stars brighter than G = 15 within 100 pc of the Sun in Gaia DR2 and derive a SFH of the solar neighbourhood in agreement with previous determinations and improving upon them because we detect chemical enrichment. Our results show a maximum of star formation activity about 10 Gyr ago, producing large numbers of stars with slightly below solar metallicity (Z = 0.014), followed by a decrease in star formation up to a minimum level occurring around 8 Gyr ago. After a quiet period, star formation rises to a maximum at about 5 Gyr ago, forming stars of solar metallicity (Z = 0.017). Finally, star formation has been decreasing until the present, forming stars of Z = 0.03 at a residual level. We test the effects introduced in the inferred SFH by ignoring the presence of unresolved binary stars in the sample, reducing the apparent limiting magnitude, and modifying the stellar initial mass function.
ALMA-IMF is an Atacama Large Millimeter/submillimeter Array (ALMA) Large Program designed to measure the core mass function (CMF) of 15 protoclusters chosen to span their early evolutionary stages. It further aims to understand their kinematics, chemistry, and the impact of gas inflow, accretion, and dynamics on the CMF. We present here the first release of the ALMA-IMF line data cubes (DR1), produced from the combination of two ALMA 12 m-array configurations. The data include 12 spectral windows, with eight at 1.3 mm and four at 3 mm. The broad spectral coverage of ALMA-IMF (∼6.7 GHz bandwidth coverage per field) hosts a wealth of simple atomic, molecular, ionised, and complex organic molecular lines. We describe the line cube calibration done by ALMA and the subsequent calibration and imaging we performed. We discuss our choice of calibration parameters and optimisation of the cleaning parameters, and we demonstrate the utility and necessity of additional processing compared to the ALMA archive pipeline. As a demonstration of the scientific potential of these data, we present a first analysis of the DCN (3–2) line. We find that DCN (3–2) traces a diversity of morphologies and complex velocity structures, which tend to be more filamentary and widespread in evolved regions and are more compact in the young and intermediate-stage protoclusters. Furthermore, we used the DCN (3–2) emission as a tracer of the gas associated with 595 continuum cores across the 15 protoclusters, providing the first estimates of the core systemic velocities and linewidths within the sample. We find that DCN (3–2) is detected towards a higher percentage of cores in evolved regions than the young and intermediate-stage protoclusters and is likely a more complete tracer of the core population in more evolved protoclusters. The full ALMA 12m-array cubes for the ALMA-IMF Large Program are provided with this DR1 release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.