A sol-gel dip-coating process was used to deposit almost stress-free highlyc-axis oriented zinc oxide (ZnO) thin films onto glass substrates. The effects of low silver doping concentration (Ag/Zn < 1%) on the structural, morphological, optical, and waveguide properties of such films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy, UV-Visible spectrophotometry, and M-lines spectroscopy (MLS). XRD analysis revealed that all the films were in single phase and had a hexagonal wurtzite structure. The grain size values were calculated and found to be about 24–29 nm. SEM micrographs and AFM images have shown that film morphology and surface roughness were influenced by Ag doping concentration. According to UV-Vis. measurements all the films were highly transparent with average visible transmission values ranging from 80% to 86%. It was found that the Ag contents lead to widening of the band gap. MLS measurements at 632.8 nm wavelength put into evidence that all thin film planar waveguides demonstrate a well-guided fundamental mode for both transverse electric and transverse magnetic polarized light. Moreover, the refractive index of ZnO thin films was found to increase by Ag doping levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.