Photoluminescence of Si nanocrystals passivated by different alkanes (hexane, octane, and tridecane) was studied at room temperature. It is shown that the emission band shape is not affected by the length of the carbon chain in the alkanes used for passivation. A pronounced fine structure of the photoluminescence band consisting of peaks separated by 150-160 meV was observed under resonant excitation. The structure is interpreted by predominant contribution from Si nanocrystal groups with particular stable size/shape existing in addition to the previously reported nanocrystals with "magic" numbers of Si atoms. The contribution of these stable nanocrystals is revealed using selective resonant photoexcitation to the higher energy states in the discrete energy spectrum of such nanocrystals.
The trench defects in InGaN/GaN multiple quantum well structures are studied using confocal photoluminescence (PL) spectroscopy and atomic force microscopy. A strong blueshift (up to ∼280 meV) and an intensity increase (by up to a factor of 700) of the emission are demonstrated for regions enclosed by trench loops. The influence of the difference in the well width inside and outside the trench loops observed by transmission electron microscopy, the compositional pulling effect, the strain relaxation inside the loop, and corresponding reduction in the built-in field on the PL band peak position and intensity were estimated. The competition of these effects is mainly governed by the width of the quantum wells in the structure. It is shown that the PL band blueshift observed within the trench defect loops in the InGaN structures with wide quantum wells is mainly caused by the reduction in efficiency of the quantum-confined Stark effect due to strain relaxation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.