The Laguna del Maule (LdM) volcanic field comprises the greatest concentration of postglacial rhyolite in the Andes and includes the products of ~40 km3 of explosive and effusive eruptions. Recent observations at LdM by interferometric synthetic aperture radar and global navigation satellite system geodesy have revealed inflation at rates exceeding 20 cm/year since 2007, capturing an ongoing period of growth of a potentially large upper crustal magma reservoir. Moreover, magnetotelluric and gravity studies indicate the presence of fluids and/or partial melt in the upper crust near the center of inflation. Petrologic observations imply repeated, rapid extraction of rhyolitic melt from crystal mush stored at depths of 4–6 km during at least the past 26 ka. We utilize multiple types of surface‐wave observations to constrain the location and geometry of low‐velocity domains beneath LdM. We present a three‐dimensional shear‐wave velocity model that delineates a ~450‐km3 shallow magma reservoir ~2 to 8 km below surface with an average melt fraction of ~5%. Interpretation of the seismic tomography in light of existing gravity, magnetotelluric, and geodetic observations supports this model and reveals variations in melt content and a deeper magma system feeding the shallow reservoir in greater detail than any of the geophysical methods alone. Geophysical imaging of the LdM magma system today is consistent with the petrologic inferences of the reservoir structure and growth during the past 20–60 kyr. Taken together with the ongoing unrest, a future rhyolite eruption of at least the scale of those common during the Holocene is a reasonable possibility.
With a population of over 160 million, Bangladesh is one of the most densely populated countries in the world (Figure 1a, inset). The country sits on a seismically active fold and thrust belt on the eastern side of the India-Eurasia collision zone that represents the updip tip of an active, oblique subduction zone diving to the east beneath Myanmar (Figures 2 and 3;
The Laguna del Maule volcanic field (LdMVF) in Chile, a rapidly inflating silicic volcanic system without historical eruption, is intersected by active regional faults. The LdMVF provides an opportunity to observe how faults influence, accommodate, or are driven by an actively deforming large silicic system. Here we use Compressed High Intensity Radar Pulse (CHIRP) acoustic reflection data to map the fault network in sediments captured within the eponymous lake at the LdMVF and combine our fault maps with the volcanic history, earthquake locations, focal mechanisms, and lacustrine magnetic data to interpret how faults and magmatism interact. Our seismic data image dominantly dip‐slip faults forming grabens within the lake, subparallel to regional faults. No indications exist in the seismic data to suggest that fault patterns were created by the volcanic system, either ring or radial faults. Fault strikes interpreted from seismic and magnetic data are consistent with mapped dike and fault orientations on land. We therefore interpret that active faults at the LdMVF are tectonic rather than volcanic in origin, forming a transtensional zone that hosts the magmatic system. However, vertical motion along a NS‐striking fault near the center of uplift suggests trapdoor‐style faulting above the volcanic center in which tectonic faults are reactivated to accommodate magmatic inflation and overlying deformation. Magnetic anomalies follow regional faults, suggesting that faults also provide migration pathways. Depositional patterns indicate a prior episode of uplift followed by quiescence, indicating that significant magmatically related uplift at the LdMVF can occur without an associated major eruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.