SYNOPSISNew strategies for the synthesis of perfectly alternating segmented polyimide-polydimethyl siloxane copolymers were developed by utilizing a transimidization method. Imide oligomers endcapped with 2-aminopyrimidine were reacted with aminopropyl terminated ( dimethyl siloxane ) oligomers to afford perfectly alternating segmented imide siloxane copolymers. The polymerization was conducted in solvents such as chlorobenzene and chloroform. High molecular weight, fully imidized perfectly alternating segmented imide siloxane copolymers were obtained within 2 h a t temperatures of 60-110°C. The mechanism of the reaction was further elucidated via model compounds and NMR characterization. The block copolymers exhibited two Tgs due to the microphase separation of the polyimide and polysiloxane phases. The Tg of the polyimide phase was a function of the length of the polyimide block. However, partial phase mixing was also evident from the DSC results on the imide siloxane copolymers prepared with low molecular weight polyimide segments. Thermooxidative stability and tensile properties of the perfectly alternating segmented imide siloxane copolymers were found to be principally dependent on the amount of poly (dimethyl siloxane) incorporated in the copolymer and did not correlate with the poly (dimethyl siloxane) or polyimide block lengths. The stress-strain behavior of both solvent cast films or molded films is also reported.
The synthesis, structure/property behavior of inorganic-organic hybrid network materials prepared by the sol gel process have been chronologically reviewed with emphasis on those systems prepared in the authors laboratory. Specific features of reactions as well as the nature of reactants are included. The morphological features of these “ceramer” systems formed have many features in common even though the reactants may be quite different. The mechanical properties of the final materials in conjunction with SAXS have proven beneficial in establishing the basics of their morphological texture. Finally, it is demonstrated how microwave radiation in some cases, can serve as an efficient way in processing the ceramer systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.