The electronic packaging industry has been using electroless Ni͑P͒ / immersion Au as bonding pads for solder joints. Because of the persistence of the black pad defect, which is due to cracks in the pad surface, the industry is looking for a replacement of the Ni͑P͒ plating. Several Cu-based candidates have been suggested, but most of them will lead to the direct contact of solder with Cu in soldering. The fast reaction of solder with Cu, especially during solid state aging, may be a concern for the solder joint reliability if the package will be used in a high temperature environment and is highly stressed. In this work, the reaction of eutectic SnPb solder with electrodeposited laminate Cu is studied. Emphasis is given to the evolution of the microstructure in the interfacial region during solid state aging and its effect on solder joint reliability. A large number of Kirkendall voids were observed at the interface between Cu 3 Sn and Cu. The void formation resulted in weak bonding between solder and Cu and led to brittle fracture at the interface in the ball shear and pull tests. The experimental results indicate that a barrier for Cu diffusion may be needed between the solder and the type of Cu used in the test vehicle for the packages that will experience high temperature ͑Ͼ100°C͒ and high stress.
Although polymer-based materials are widely used in microelectronics packaging and viscoelasticity is an intrinsic characteristic of polymers, viscoelastic properties of polymeric materials are often ignored in package stress analyses due to the difficulty in measuring these properties. However, it is necessary to consider the viscoelastic behavior when an accurate stress model is required. Viscoelastic properties of materials can be characterized in either the time or the frequency domain. In this study, stress relaxation experiments were performed on a molding compound in the time domain. A thermorheologically simple model was assumed to deduce the master curve of relaxation modulus using the time-temperature equivalence assumption. A Prony series expansion was used to express the material's relaxation behavior. Two methods to determine the Prony pairs and shift factors were compared. After they were determined, the master curve at a reference temperature was shifted to every measured temperature for comparison with experimental data.
Absorption and desorption tests were conducted on five distinct commercial epoxy mold compounds (EMCs) used in electronic packaging. For absorption, the samples were subjected to 85°C /85% relative humidity and 60°C /85% relative humidity soaking. Desorption conditions were above glass transition temperature at 140°C and 160°C. A dual stage model is developed in this paper for both absorption and desorption processes. Both stages in moisture absorption and desorption, i.e., Fickian diffusion and relaxation process, are described mathematically using a combination of Fickian terms. The models generated reasonable results for the diffusive properties and displayed outstanding experimental fits. All five compounds have shown strong non-Fickian diffusion behaviors, which were further demonstrated by experiments with different thicknesses. For absorption, results show Fickian diffusion is significantly faster than non-Fickian diffusion. Saturated moisture concentration associated with Fickian-stage diffusion is independent of temperature if it is below glass transition temperature. Sample thickness played a major role in diffusive behavior in the second stage where non-Fickian diffusion occurs. For desorption, higher temperature corresponds to less percentage of the permanent residual moisture content. At 160°C, 90% of the initial moisture for all samples could be diffused out within 24 hours, following a modified Fickian diffusion process. The dual stage model developed in this paper provides a foundation for modeling anomalous moisture diffusion behavior using commercial finite elemental method software.
Constitutive models for SnAgCu solder alloys are of great interest at the present. Commonly, constitutive models that have been successfully used in the past for Sn-Pb solders are used to describe the behavior of SnAgCu solder alloys. Two issues in the modeling of lead-free solders demand careful attention: 1) Lead-free solders show significantly different creep strain evolution with time, stress and temperature, and the assumption of evolution to steady state creep nearly instantaneously may not be valid in SnAgCu alloys and 2) Models derived from bulk sample test data may not be reliable when predicting deformation behavior at the solder interconnection level for lead-free solders due to the differences in the inherent microstructures at these different scales. In addition, the building of valid constitutive models from test data derived from tests on solder joints must de-convolute the effects of joint geometry and its influence on stress heterogeneity. Such issues have often received insufficient attention in prior constitutive modeling efforts. In this study all of the above issues are addressed in developing constitutive models of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu solder alloys, which represent the extremes of Ag composition that have been mooted at the present time. The results of monotonic testing are reported for strain rates ranging from 4.02E-6 to 2.40E-3 s 1 . The creep behavior at stress levels ranging from 7.8 to 52 MPa is also described. Both types of tests were performed at temperatures of 25 C, 75 C and 125 C. The popular Anand model and the classical time-hardening creep model are fit to the data, and the experimentally obtained model parameters are reported. The test data are compared against other reported data in the literature and conclusions are drawn on the plausible sources of error in the data reported in the prior literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.