Knowing thus the Algorithm of this calculus, which I call Differential Calculus, all differential equations can be solved by a common method (Gottfried Wilhelm von Leibniz, 1646–1719).When, several years ago, I saw for the first time an instrument which, when carried, automatically records the number of steps taken by a pedestrian, it occurred to me at once that the entire arithmetic could be subjected to a similar kind of machinery so that not only addition and subtraction, but also multiplication and division, could be accomplished by a suitably arranged machine easily, promptly and with sure results…. For it is unworthy of excellent men to lose hours like slaves in the labour of calculations, which could safely be left to anyone else if the machine was used…. And now that we may give final praise to the machine, we may say that it will be desirable to all who are engaged in computations which, as is well known, are the managers of financial affairs, the administrators of others estates, merchants, surveyors, navigators, astronomers, and those connected with any of the crafts that use mathematics (Leibniz).
We consider multiphysics applications from algorithmic and architectural perspectives, where “algorithmic” includes both mathematical analysis and computational complexity, and “architectural” includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose some commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities.
In part one of this paper [T. Butler and D. Estep, SIAM J. Numer. Anal., to appear], we develop and analyze a numerical method to solve a probabilistic inverse sensitivity analysis problem for a smooth deterministic map assuming that the map can be evaluated exactly. In this paper, we treat the situation in which the output of the map is determined implicitly and is difficult and/or expensive to evaluate, e.g., requiring the solution of a differential equation, and hence the output of the map is approximated numerically. The main goal is an a posteriori error estimate that can be used to evaluate the accuracy of the computed distribution solving the inverse problem, taking into account all sources of statistical and numerical deterministic errors. We present a general analysis for the method and then apply the analysis to the case of a map determined by the solution of an initial value problem.
In this paper, we analyze a multiscale operator splitting method for solving systems of ordinary differential equations such as those that result upon space discretization of a reactiondiffusion equation. Our goal is to analyze and accurately estimate the error of the numerical solution, including the effects of any instabilities that can result from multiscale operator splitting. We present both an a priori error analysis and a new type of hybrid a priori-a posteriori error analysis for an operator splitting discontinuous Galerkin finite element method. Both analyses clearly distinguish between the effects of the operator splitting and the discretization of each component of the decomposed problem. The hybrid analysis has the form of a computable a posteriori leading order expression and a provably higher order a priori expression. The hybrid analysis takes into account the fact that the adjoint problems for the original problem and a multiscale operator splitting discretization differ in significant ways. In particular, this provides the means to monitor global instabilities that can arise from operator splitting.
A cylindrical shock wave produces this intricate flow pattern as it converges from outside sixteen circular obstacles and diffracts. Researchers are interested in the structure of the solution near the focus (green region). This high-resolution numerical solution was computed using adaptive overlapping meshes. Source: Center for Applied Scientific Computing, Lawrence Livermore National Laboratory. The panelists reported on science and engineering needs for each of these offices, and then discussed and identified mathematical advances that will be required if these challenges are to be met. A review of DOE challenges in energy, the environment and national security brings to light a broad and varied array of questions that the DOE must answer in the coming years. A representative subset of such questions includes: APPLIED MATHEMATICS AT THE U.S. DEPARTMENT OF ENERGY: Past, Present and a View to the FutureA• Can we predict the operating characteristics of a clean coal power plant?• How stable is the plasma containment in a tokamak?• How quickly is climate change occurring and what are the uncertainties in the predicted time scales?• How quickly can an introduced bio-weapon contaminate the agricultural environment in the US?• How do we modify models of the atmosphere and clouds to incorporate newly collected data of possibly of new types?• How quickly can the United States recover if part of the power grid became inoperable?Over the past half-century, the Applied Mathematics program in the U.S. Department of Energy's Office of Advanced Scientific Computing Research has made significant, enduring advances in applied mathematics that have been essential enablers of modern computational science. Motivated by the scientific needs of the Department of Energy and its predecessors, advances have been made in mathematical modeling, numerical analysis of differential equations, optimization theory, mesh generation for complex geometries, adaptive algorithms and other important mathematical areas. High-performance mathematical software libraries developed through this program have contributed as much or more to the performance of modern scientific computer codes as the high-performance computers on which these codes run. Funding from this program has assisted generations of graduate and postdoctoral students who have continued on to populate and contribute productively to research organizations in industry, universities and federal laboratories. The combination of these mathematical advances and the resulting software has enabled high-performance computers to be used for scientific discovery in ways that could only be imagined at the program's inception.Our nation, and indeed our world, face great challenges that must be addressed in coming years, and many of these will be addressed through the development of scientific understanding and engineering advances yet to be discovered. The U.S. Department of Energy (DOE) will play an essential role in providing science-based solutions to many of these problems, particularly those...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.