Atlantic cod, Gadus morhua, were maintained on different ration levels or starved to produce a variety of growth rates. The in vivo rates of protein synthesis and degradation were determined for the whole fish and various tissues. As ration level, and hence growth rates, increased, both whole-animal protein synthesis and degradation rates increased linearly; growth occurred because of the preponderance of synthesis over degradation. On average, a 300-g cod growing at 1.0%∙d−1synthesised 1.25 g of protein with 0.4 g of this protein remaining as growth. The proportion of total protein synthesis which was retained as growth increased with increasing growth rate; at a maximum growth rate of 2%∙d−1, over 40% of the protein synthesised was retained as growth. The ranking of the tissues in terms of fractional rates of protein synthesis was liver > gills > intestine > spleen > ventricle > stomach > gonads > white muscle. The white muscle, gills, liver, stomach, spleen, and ventricle all showed similar patterns of increased protein synthesis with increased growth rate. The white muscle has the highest efficiency of retention of protein and accounts for 40% of the total protein accretion per day. In starving fish there was a constant level of protein synthesis, irrespective of the rate of weight loss. However, degradation rates increased in the whole animal and in white muscle as the rate of weight loss increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.