Low-density lipoprotein (LDL) apheresis (LA) selectively eliminates lipoproteins containing apolipoprotein B 100 (ApoB100) on patients affected by severe dyslipidemia. In addition to lowering lipids, LA is thought to exert pleiotropic effects altering a number of other compounds associated with atherosclerosis, such as pro-and anti-inflammatory cytokines or pro-thrombotic factors. More knowledge needs to be gathered on the effects of LA, and particularly on its ability to modify blood components other than lipids. We performed a multiparametric assessment of the inflammatory, metabolic and proteomic profile changes after Heparininduced lipoprotein precipitation (H.E.L.P.) apheresis on serum samples from nine dyslipidemic patients evaluating cholesterol and lipoproteins, plasma viscosity and density, metabolites, cytokines, PCSK9 levels and other proteins selectively removed after the treatment. Our results show that H.E.L.P. apheresis is effective in lowering lipoprotein and PCSK9 levels. Although not significantly, complement and inflammation-related proteins are also affected, indicating a possible transient epiphenomenon induced by the extracorporeal procedure.
Intraoperative cell salvage reduces the need for allogeneic blood transfusion in complex cancer surgery, but concerns about the possibility of it re-infusing cancer cells have hindered its application in oncology. We monitored the presence of cancer cells on patient-salvaged blood by means of flow cytometry; next, we simulated cell salvage, followed by leucodepletion and irradiation on blood contaminated with a known amount of EpCAM-expressing cancer cells, assessing also residual cancer cell proliferation as well as the quality of salvaged red blood cell concentrates (RBCs). We observed a significant reduction of EpCAM-positive cells in both cancer patients and contaminated blood, which was comparable to the negative control after leucodepletion. The washing, leucodepletion and leucodepletion plus irradiation steps of cell salvage were shown to preserve the quality of RBCs in terms of haemolysis, membrane integrity and osmotic resistance. Finally, cancer cells isolated from salvaged blood lose their ability to proliferate. Our results confirm that cell salvage does not concentrate proliferating cancer cells, and that leucodepletion allows for the reduction of residual nucleated cells, making irradiation unnecessary. Our study gathers pieces of evidence on the feasibility of this procedure in complex cancer surgery. Nevertheless, it highlights the necessity of finding a definitive consensus through prospective trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.