We report stable, high performance zinc oxide thin film transistors grown by an atmospheric pressure atomic layer deposition system. With all deposition and processing steps kept at or below 200°C, the alumina gate dielectric shows low leakage (below 10−8A∕cm2) and high breakdown fields. Zinc oxide thin film transistors in a bottom gate geometry yield on/off ratios above 108, near zero turn-on voltage, little or no hysteresis, and mobility greater than 10cm2∕Vs. With alumina passivation, shifts in threshold voltage under gate bias stress compare favorably to those reported in the literature.
In organic thin film transistors (OTFT), the morphology and microstructure of an organic thin film has a strong impact on the charge carrier mobility and device characteristics. To have well-defined and predictable thin film morphology, it is necessary to adapt the basic structure of semiconducting molecules in a way that results in an optimum crystalline packing motif. Here we introduce a new molecular design feature for organic semiconductors that provides the optimized crystalline packing and thin film morphology that is essential for efficient charge-carrier transport. Thus, cyclohexyl end groups in naphthalene diimide assist in directing intermolecular stacking leading to a dramatic improvement in field effect mobility. Accordingly, OTFT devices prepared with vapor deposited N,N′-bis(cyclohexyl) naphthalene-1,4,5,8-bis(dicarboximide) (1) regularly exhibit field effect mobility near 6 cm2/(V s), which is one of the highest carrier mobilities reported for either n- or p-type organic semiconducting thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.