In organic thin film transistors (OTFT), the morphology and microstructure of an organic thin film has a strong impact on the charge carrier mobility and device characteristics. To have well-defined and predictable thin film morphology, it is necessary to adapt the basic structure of semiconducting molecules in a way that results in an optimum crystalline packing motif. Here we introduce a new molecular design feature for organic semiconductors that provides the optimized crystalline packing and thin film morphology that is essential for efficient charge-carrier transport. Thus, cyclohexyl end groups in naphthalene diimide assist in directing intermolecular stacking leading to a dramatic improvement in field effect mobility. Accordingly, OTFT devices prepared with vapor deposited N,N′-bis(cyclohexyl) naphthalene-1,4,5,8-bis(dicarboximide) (1) regularly exhibit field effect mobility near 6 cm2/(V s), which is one of the highest carrier mobilities reported for either n- or p-type organic semiconducting thin films.
In a landmark publication over 40 years ago, Rehm and Weller (RW) showed that the electron transfer quenching constants for excited-state molecules in acetonitrile could be correlated with the excited-state energies and the redox potentials of the electron donors and acceptors. The correlation was interpreted in terms of electron transfer between the molecules in the encounter pair (A*/D ⇌ A(•-)/D(•+) for acceptor A and donor D) and expressed by a semiempirical formula relating the quenching constant, k(q), to the free energy of reaction, ΔG. We have reinvestigated the mechanism for many Rehm and Weller reactions in the endergonic or weakly exergonic regions. We find they are not simple electron transfer processes. Rather, they involve exciplexes as the dominant, kinetically and spectroscopically observable intermediate. Thus, the Rehm-Weller formula rests on an incorrect mechanism. We have remeasured k(q) for many of these reactions and also reevaluated the ΔG values using accurately determined redox potentials and revised excitation energies. We found significant discrepancies in both ΔG and k(q), including A*/D pairs at high endergonicity that did not exhibit any quenching. The revised data were found to obey the Sandros-Boltzmann (SB) equation k(q) = k(lim)/[1 + exp[(ΔG + s)/RT]]. This behavior is attributed to rapid interconversion among the encounter pairs and the exciplex (A*/D ⇌ exciplex ⇌ A(•-)/D(•+)). The quantity k(lim) represents approximately the diffusion-limited rate constant, and s the free energy difference between the radical ion encounter pair and the free radical ions (A(•-)/D(•+) vs A(•-) + D(•+)). The shift relative to ΔG for the overall reaction is positive, s = 0.06 eV, rather than the negative value of -0.06 eV assumed by RW. The positive value of s involves the poorer solvation of A(•-)/D(•+) relative to the free A(•-) + D(•+), which opposes the Coulombic stabilization of A(•-)/D(•+). The SB equation does not involve the microscopic rate constants for interconversion among the encounter pairs and the exciplex. Data that fit this equation contain no information about such rate constants except that they are faster than dissociation of the encounter pairs to (re-)form the corresponding free species (A* + D or A(•-) + D(•+)). All of the present conclusions agree with our recent results for quenching of excited cyanoaromatic acceptors by aromatic donors, with the two data sets showing indistinguishable dependencies of k(q) on ΔG.
A variety of methoxy- and methyl-substituted phenol radical cations have been generated and characterized by laser flash photolysis in solution under ambient conditions. The radical cations were generated by either photosensitized electron transfer using 1,4-dicyanonaphthalene with biphenyl as a cosensitizer in acetonitrile or by direct excitation of the phenol at 266 nm. The phenol radical cations have absorption maxima between 410 and 460 nm, with the exception of the 3,5-dimethoxyphenol which absorbs at 580 nm. The assignment of the observed transients to phenol radical cations is based on their spectral similarity to matrix spectra for the same species and to the corresponding methoxybenzene radical cations, as well as their characteristic reactivity. In the presence of small amounts of water the radical cations are not detected and the phenoxyl radical is the only observed transient in the photosensitized electron transfer. For those phenols for which authentic phenoxyl spectra are not available, the identity of the radical was confirmed by its generation by hydrogen abstraction by the tert-butoxyl radical. Although several of the phenols can be photoionized in either 1:1 aqueous ethanol or in acetonitrile, this is a less general route for the formation and characterization of the phenol radical cations. The rate constants for deprotonation of the phenol radical cations by water were measured and fall within the range (0.6−6) × 108 M-1 s-1; the 2-methoxyphenol radical cation is more reactive than the 4-methoxy, consistent with a recent estimate of the pK a for these species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.