We present Hubble Space Telescope WFPC2 images of elephant trunks in the H II region M16. There are three principle results of this study. First, the morphology and stratified ionization structure of the interface between the dense molecular material and the interior of the H II region is well understood in terms of photoionization of a photoevaporative flow. Photoionization models of an empirical density profile capture the essential features of the observations, including the extremely localized region of [S II] emission at the interface and the observed offset between emission peaks in lower and higher ionization lines. The details of this structure are found to be a sensitive function both of the density profile of the interface and of the shape of the ionizing continuum. Interpretation of the interaction of the photoevaporative flow with gas in the interior of the nebula supports the view that much of the emission from H II regions may arise in such flows. Photoionization of photoevaporative flows may provide a useful paradigm for interpreting a wide range of observations of H II regions. Second, we report the discovery of a population of small cometary globules that are being uncovered as the main bodies of the elephant trunks are dispersed. Several lines of evidence connect these globules to ongoing star formation, including the association of a number of globules with stellar objects seen in IR images of M16 or in the continuum HST images themselves. We refer to these structures as evaporating gaseous globules, or "EGGs." These appear to be the same type of object as the nebular condensations seen previously in M42. The primary difference between the two cases is that in M16 we are seeing the objects from the side, while in M42 the objects are seen more nearly face-on against the backdrop of the ionized face of the molecular cloud. We find that the "evaporating globule" interpretation naturally accounts for the properties of objects in both nebulae, while avoiding serious difficulties with the competing "evaporating disk" model previously applied to the objects in M42. More generally, we find that disk-like structures are relatively rare in either nebula. Third, the data indicate that photoevaporation may have uncovered many EGGs while the stellar objects in them were still accreting mass, thereby freezing the mass distribution of the protostars at an early stage in their evolution. We conclude that the masses of stars in the cluster environment in M16 are generally determined not by the onset of stellar winds, as in more isolated regions of star formation, but rather by disruption of the star forming environment by the nearby 0 stars.
Analysis of V band HST Planetary Camera images of the elliptical galaxy M32 shows that its nucleus is extremely dense and remains unresolved at even the HST diffraction limit. A combined approach of image deconvolution and model fitting is used to investigate the starlight distribution into limiting radii of 0~04 (0.14 pc at 700 kpc). The logarithmic slope of the brightness profile smoothly flattens from r=-1.2 at 3.4 pc to r=-0.5 at 0.34 pc; interior to this radius the profile is equally consistent with a singular J-L(r) ex: ,-112 cusp or a small nonisothermal core with rc<0.37 pc. The isophotes maintain constant ellipticity into tlle center, and there is no evidence for a central point source, disk, dust, or any other substructures. The cusp model implies central mass densities p0 > 3 X 10 7 Jl 0 pc-3 at the resolution limit and is consistent with a central vile= 3 X 10 6 J/ 0 black hole; the core model implies p 0 :::::4 X 10 6 J/ 0 pc-3 • From the viewpoint of long-term stability, we argue that a starlight cusp surrounding a central black hole is the more plausible interpretation of the observations. A core at the implied density and size without a black hole has a relaxation time of only-7 X 10 7 yr and a short
The lunar ranging measurements now being made at the McDonald Observatory have an accuracy of 1 nsec in round-trip travel time. This corresponds to 15 cm in the one-way distance. The use of lasers with pulse-lengths of less than 1 nsec is expected to give an accuracy of 2 to 3 cm in the next few years. A new station is under construction in Hawaii, and additional stations in other countries are either in operation or under development. It is hoped that these stations will form the basis for a worldwide network to determine polar motion and earth rotation on a regular basis, and will assist in providing information about movement of the tectonic plates making up the earth's surface. Several mobile lunar ranging stations with telescopes having diameters of 1.0 m or less could, in the future, greatly extend the information obtainable about motions within and between the tectonic plates. The data obtained so far by the McDonald Observatory have been used to generate a new lunar ephemeris based on direct numerical integration of the equations of motion for the moon and planets. With this ephemeris, the range to the three Apollo retro-reflectors can be fit to an accuracy of 5 m by adjusting the differences in moments of inertia of the moon about its principal axes, the selenocentric coordinates of the reflectors, and the McDonald longitude. The accuracy of fitting the results is limited currently by errors of the order of an arc second in the angular orientation of the moon, as derived from the best available theory of how the moon rotates in response to the torques acting on it. Both a new calculation of the moon's orientation as a function of time based on direct numerical integration of the torque equations and a new analytic theory of the moon's orientation are expected to be available soon, and to improve considerably the accuracy of fitting the data. The accuracy already achieved routinely in lunar laser ranging represents a hundredfold improvement over any previously available knowledge of the distance to points on the lunar surface. Already, extremely complex structure has been observed in the lunar rotation and significant improvement has been achieved in our knowledge of lunar orbit. The selenocentric coordinates of the retroreflectors give improved reference points for use in lunar mapping, and new information on the lunar mass distribution has been obtained. Beyond the applications discussed in this article, however, the history of science shows many cases of previously unknown, phenomena discovered as a consequence of major improvements in the accuracy of measurements. It will be interesting to see whether this once again proves the case as we acquire an extended series of lunar distance observations with decimetric and then centimetric accuracy.
We report astrometric measurements of Carinae's Weigelt blobs C and D (also known as speckle objects C and D) derived from observations with the Hubble Space Telescope Wide Field Planetary Camera 2. Using three epochs of data with a temporal baseline of 5.9 yr, we measure blob D's proper motion relative to the central star to be 4.4 AE 1.4 mas yr À1 , implying a date of origin of 1934.1 þ16:0 À31:7 . Similarly, using two epochs with a 1.7 yr baseline, we measure blob C's relative proper motion to be 3.8 AE 5.6 mas yr À1 , indicating a probability of ejection after 1910 of %60%; we view this as confirming the more accurate blob D results (assuming coevality), with a combined post-1910 ejection indicated at a %90% confidence level. The blob D date roughly coincides with the sudden brightening of the central star observed in 1941 and provides a possible explanation for the onset of certain narrow spectral features, associated with the Weigelt blobs, that have been observed only since the mid-1940s. We propose that the ejection of Weigelt blobs C and D was related to this 1941 event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.