The growth of losses, secondary kinetic energy, and streamwise vorticity have been studied in a high turning rotor cascade. Negative vorticity associated with the passage vortex agreed well with predictions of classical secondary flow theory in the early part of the blade passage. However, toward the exit, the distortion of the flow by the secondary velocities rendered the predictions inaccurate. Areas of positive vorticity were associated with the feeding of loss into the bulk flow and have been related to separation lines observed by surface flow visualization.
A linear design system, already in use for the forward and inverse design of three-dimensional turbine aerofoils, has been extended for the design of their end walls. This paper shows how this method has been applied to the design of a nonaxisymmetric end wall for a turbine rotor blade in linear cascade. The calculations show that nonaxisymmetric end wall profiling is a powerful tool for reducing secondary flows, in particular the secondary kinetic energy and exit angle deviations. Simple end wall profiling is shown to be at least as beneficial aerodynamically as the now standard techniques of differentially skewing aerofoil sections up the span, and (compound) leaning of the aerofoil. A design is presented that combines a number of end wall features aimed at reducing secondary loss and flow deviation. The experimental study of this geometry, aimed at validating the design method, is the subject of the second part of this paper. The effects of end wall perturbations on the flow field are calculated using a three-dimensional pressure correction based Reynolds-averaged Navier–Stokes CFD code. These calculations are normally performed overnight on a cluster of work stations. The design system then calculates the relationships between perturbations in the end wall and resulting changes in the flow field. With these available, linear superposition theory is used to enable the designer to investigate quickly the effect on the flow field of many combinations of end wall shapes (a matter of minutes for each shape). [S0889-504X(00)00902-8]
Measurements of the mean and turbulent flow field have been made in a cascade of high turning turbine rotor blades. The inlet turbulence was raised to 5% by a grid placed upstream of the cascade, and the secondary flow region was traversed within and downstream of the blades using a 5 hole probe and crossed hot-wires. Flow very close to the end wall was measured using a single wire placed at several orientations. Some frequency spectra of the turbulence were also obtained. The results shows that the mean flow field is not affected greatly by the high inlet turbulence. The Reynolds stresses were found to be very high, particularly in the loss core. Assessment of the contributions to production of turbulence by the Reynolds stresses show that the normal stresses have significant affects as well as the shear stresses. The calculation of eddy viscosity from two independent shear stresses show it to be fairly isotropic in the loss core. Within the blade passage, the flow close to the end wall is highly skewed and exhibits generally high turbulence. The frequency spectra show no significant resonant peaks, except for one at very low frequency, attributable to an acoustic resonance.
The Durham Linear Cascade has been redesigned with the nonaxisymmetric profiled end wall described in the first part of this paper, with the aim of reducing the effects of secondary flow. The design intent was to reduce the passage vortex strength and to produce a more uniform exit flow angle profile in the radial direction with less overturning at the wall. The new end wall has been tested in the linear cascade and a comprehensive set of measurements taken. These include traverses of the flow field at a number of axial planes and surface static pressure distributions on the end wall. Detailed comparisons have been made with the CFD design predictions, and also for the results with a planar end wall. In this way an improved understanding of the effects of end wall profiling has been obtained. The experimental results generally agree with the design predictions, showing a reduction in the strength of the secondary flow at the exit and a more uniform flow angle profile. In a turbine stage these effects would be expected to improve the performance of any downstream blade row. There is also a reduction in the overall loss, which was not given by the CFD design predictions. Areas where there are discrepancies between the CFD calculations and measurement are likely to be due to the turbulence model used. Conclusions for how the three-dimensional linear design system should be used to define end wall geometries for improved turbine performance are presented. [S0889-504X(00)01002-3]
The regions of laminar and turbulent flow have been investigated in a linear cascade of a high tuming HP rotor blades. Measurements of intermittency close to the blade and end wall surfaces have shown substantial areas of laminar and transitional flow. The implications for turbulence modelling are important, and Navier-Stokes computations have been performed to investigate how well transition can be modelled in such a flow. Using the intermittency data to specify transitional areas, the mixing length model of turbulence produces excellent results, although there is some sensitivity to the assumed freestream length scale. High Reynolds k-ε model results show too much turbulence and loss using the measured high inlet length scale, but the results are improved with the Kato-Launder modification. A low Reynolds number model does not seem to predict the transition effects, although more work is required with this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.