Tomographic analysis demonstrates that the polarization state of pairs of photons emitted from a biexciton decay cascade becomes entangled when spectral filtering is applied. The measured density matrix of the photon pair satisfies the Peres criterion for entanglement by more than 3 standard deviations of the experimental uncertainty and violates Bell's inequality. We show that the spectral filtering erases the "which path" information contained in the photons' color and that the remanent information in the quantum dot degrees of freedom is negligible.
Photonic cluster states are a resource for quantum computation based solely on single-photon measurements. We use semiconductor quantum dots to deterministically generate long strings of polarization-entangled photons in a cluster state by periodic timed excitation of a precessing matter qubit. In each period, an entangled photon is added to the cluster state formed by the matter qubit and the previously emitted photons. In our prototype device, the qubit is the confined dark exciton, and it produces strings of hundreds of photons in which the entanglement persists over five sequential photons. The measured process map characterizing the device has a fidelity of 0.81 with that of an ideal device. Further feasible improvements of this device may reduce the resources needed for optical quantum information processing.
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Bulk (13)C polarization can be strongly enhanced in diamond at room temperature based on the optical pumping of nitrogen-vacancy color centers. This effect was confirmed by irradiating single crystals at a ~50 mT field promoting anticrossings between electronic excited-state levels, followed by shuttling of the sample into an NMR setup and by subsequent (13)C detection. A nuclear polarization of ~0.5%--equivalent to the (13)C polarization achievable by thermal polarization at room temperature at fields of ~2000 T--was measured, and its bulk nature determined based on line shape and relaxation measurements. Positive and negative enhanced polarizations were obtained, with a generally complex but predictable dependence on the magnetic field during optical pumping. Owing to its simplicity, this (13)C room temperature polarizing strategy provides a promising new addition to existing nuclear hyperpolarization techniques.
We apply low temperature confocal optical microscopy to spatially resolve, and spectroscopically study, a single self-assembled quantum dot. By comparing the emission spectra obtained at various excitation levels to a theoretical many body model, we show that (a) single exciton radiative recombination is very weak, and ( b) sharp spectral lines are due to optical transitions between confined multiexcitonic states among which excitons thermalize within their lifetimes. Once these few states are fully occupied, broadbands appear due to transitions between states which contain electrons in the continuum.[ S0031-9007(98)06202-4]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.