Prostate-specific membrane antigen (PSMA) is a transmembrane protein that is overexpressed in advanced stage prostate adenocarcinomas. As a novel target for in vivo prognostic and therapeutic approaches, the distribution pattern of PSMA in primary and metastatic tumors is of significant interest. In this study we addressed the cellular distribution and heterogeneity of PSMA expression. Paraffin-embedded sections of 51 patients with primary prostate carcinoma and distant metastases were evaluated. Immunohistochemistry was used to determine the cellular localization, staining intensity and positive cell fraction which were related to tumor type and growth pattern. We demonstrated differences in the intracellular localization of the PSMA immunostaining which seem to be related to the tumor differentiation pattern. A significant number of the primary tumors (7/51) and metastases (6/51) presented with highly heterogeneous PSMA expression and in further 2 primary, and 8 metastatic tumors the staining was in the negative range (<10% positive tumor cells). A direct correlation between histological parameters and PSMA expression could not be demonstrated. Our findings clearly support the feasibility but also direct to potential failures of PSMA-targeted in vivo diagnostic and therapeutic approaches in prostate cancer patients with distant metastasis.
Peripheral vascular disease affects some 12%–14% of the general population, and the majority of people with the disease are asymptomatic. The Ankle Brachial Pressure Index (ABPI) test is widely used by a diverse range of practitioners (in the community and hospital setting) in order to screen asymptomatic patients, diagnose patients with clinical symptoms, and to monitor patients who have had radiological or surgical intervention. This paper explains the theoretical basis of the ABPI test, as well as the relevance of the common modifications of the test. It explores the background to the quoted normal ranges for the ABPI test. It reviews the large body of literature that has developed on the association between ABPI and cardiovascular risk, as well as ABPI as a predictor for cardiovascular morbidity and mortality, highlighting the evidence that can inform practice. The review looks critically at the limitations of the ABPI test, providing practitioners with an evidence-based update on the importance and challenges of standardizing ABPI methodology. This paper highlights the influence of the key technical aspects of the ABPI test that all practitioners need to consider in order to be able to make more reliable and informed management decisions based on ABPI findings.
~Measurement of the nitrate-reducing potential by bacteria in saltmarsh sediment, using a thermal gradient block incubator, revealed seasonal physiological changes in the community. A mesophilic part of the nitrate-reducing community was always present, although it achieved maximum development at the end of the summer and minimum development at the end of the winter. In contrast, a distinct psychrotrophic part of the community achieved maximum development at the end of the winter but disappeared during summer. Chemostat enrichment of nitratereducing bacteria at I0 "C isolated predominantly Pseudomonos spp., but Vibrio spp. predominated in enrichments at 25 "C. The observed seasonal changes in situ might reflect differential seasonal selection of these two groups of bacteria.
Experiments were carried out with slurries of saltmarsh sediment to which varying concentrations of nitrate were added. The acetylene blocking technique was used to measure denitrification by accumulation of nitrous oxide, while reduction of nitrate to nitrite and ammonium was also measured. There was good recovery of reduced nitrate and at the smallest concentration of nitrate used (250 μM) there was approximately equal reduction to either ammonium or nitrous oxide (denitrification). Nitrite was only a minor end‐product of nitrate reduction. As the nitrate concentration was increased the proportion of the nitrate which was denitrified to nitrous oxide increased, to 83% at the greatest nitrate concentration used (2 mM), while reduction to ammonium correspondingly decreased. This change was attributed either to a greater competitiveness by the denitrifiers for nitrate as the ratio of electron donor to electron acceptor decreased; or to the increased production of nitrite rather than ammonium by fermentative bacteria under high nitrate, the nitrite then being reduced to nitrous oxide by denitrifying bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.