The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), and the Humidity Sounder for Brazil (HSB) form an integrated cross-track scanning temperature and humidity sounding system on the Aqua satellite of the Earth Observing System (EOS). AIRS is an infrared spectrometer/radiometer that covers the 3.7-15.4-m spectral range with 2378 spectral channels. AMSU is a 15-channel microwave radiometer operating between 23 and 89 GHz. HSB is a four-channel microwave radiometer that makes measurements between 150 and 190 GHz. In addition to supporting the National Aeronautics and Space Administration's interest in process study and climate research, AIRS is the first hyperspectral infrared radiometer designed to support the operational requirements for medium-range weather forecasting of the National Ocean and Atmospheric Administration's National Centers for Environmental Prediction (NCEP) and other numerical weather forecasting centers. AIRS, together with the AMSU and HSB microwave radiometers, will achieve global retrieval accuracy of better than 1 K in the lower troposphere under clear and partly cloudy conditions. This paper presents an overview of the science objectives, AIRS/AMSU/HSB data products, retrieval algorithms, and the ground-data processing concepts. The EOS Aqua was launched on May 4, 2002 from Vandenberg AFB, CA, into a 705-km-high, sun-synchronous orbit. Based on the excellent radiometric and spectral performance demonstrated by AIRS during prelaunch testing, which has by now been verified during on-orbit testing, we expect the assimilation of AIRS data into the numerical weather forecast to result in significant forecast range and reliability improvements.
Two new pulsating radio sources, designated NP 0527 and NP 0532, were found near the Crab Nebula and could be coincident with it. Both sources are sporadic, and no periodicities are evident. The pulse dispersions indicate that 1.58 +/- 0.03 and 1.74 +/- 0.02 x 10(20) electrons per square centimeter lie in the direction of NP 0527 and NP 0532, respectively.
The Atmospheric Infrared Sounder (AIRS), the hyperspectral infrared sounder on the NASA Aqua mission, both improves operational weather prediction and provides high-quality research data for climate studies. The Atmospheric Infrared Sounder (AIRS), and its two companion microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), form the integrated atmospheric sounding system flying on the Earth Observing System (EOS) Aqua spacecraft since its launch in May 2002.1 The primary scientific achievement of AIRS has been to improve weather prediction (Le Marshall et al. 2005a,b,c) and to study the water and energy cycle (Tian et al. 2006). AIRS also provides information on several greenhouse gases. The measurement goal of AIRS is the retrieval of temperature and precipitable-water vapor profiles with accuracies approaching those of conventional radiosondes. In the following text we use the terms AIRS and AIRS-AMSU-HSB interchangeably.1 The HSB ceased functioning after 5 February 2003. This did not have an impact on the accuracy, coverage, or resolution of the AIRS core data product, but its loss has had a significant impact on AIRS research products.A comprehensive set of articles on AIRS and AMSU design details, prelaunch calibration, and prelaunch retrieval performance expectations were published in a special issue of IEEE Transactions on Geoscience and Remote Sensing (2003, vol. 41, no. 2). This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.
The Lapped Orthogonal Transform (LOT) is a new tool for block transform coding with basis functions that overlap adjacent blocks [1]-[3]. The LOT can reduce the blocking effect to very low levels. In this paper, an exact derivation of an optimal LOT is presented. The optimal LOT is related to the discrete cosine transform (DCT) in such a way that a fast algorithm for a nearly optimal LOT is derived. Compared to the DCT, the fast LOT requires about 20-30 percent more computations, mostly additions. An image coding example demonstrates the effectiveness of the LOT in reducing blocking effects. Unlike earlier approaches to the reduction of blocking effects, the LOT actually leads to slightly smaller signal reconstruction errors than does the DCT.
Detection of very intense short radio bursts from Neptune was possible as early as 30 days before closest approach and at least 22 days after closest approach. The bursts lay at frequencies in the range 100 to 1300 kilohertz, were narrowband and strongly polarized, and presumably originated in southern polar regions ofthe planet. Episodes of smooth emissions in the frequency range from 20 to 865 kilohertz were detected during an interval of at least 10 days around closest approach. The bursts and the smooth emissions can be described in terms of rotation in a period of 16.11 +/- 0.05 hours. The bursts came at regular intervals throughout the encounter, including episodes both before and after closest approach. The smooth emissions showed a half-cycle phase shift between the five episodes before and after closest approach. This experiment detected the foreshock of Neptune's magnetosphere and the impacts of dust at the times of ring-plane crossings and also near the time of closest approach. Finally, there is no evidence for Neptunian electrostatic discharges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.