Interconnection networks allowing multiple simultaneous broadcasts are becoming feasible, mostly due to advances in fiber-optics and VLSI technology. Distributedshared-memory implementations on such networks promise high performance even for applications with small granularity. This paper summarizes the architecture of one such implementation, the Simultaneous Optical Multiprocessor Exchange Bus, and examines the performance of an augmented DSM protocol which provides fault tolerance by exploiting the natural DSM replication of data in order to maintain a recovery memory in each processing node. Theoretical and simulation results show that the additional data replication necessary to create fault-tolerant DSM causes no reduction in system performance during normal operation and eliminates most of the overhead at checkpoint creation. Data blocks which are duplicated to maintain the recovery memory may be utilized by the regular DSM protocol, reducing network traffic, and increasing the processor utilization significantly.
Abstract. The Simultaneous Optical Multiprocessor Exchange Bus (SOME-Bus) is a low-latency, high-bandwidth interconnection network which directly links arbitrary pairs of processor nodes without contention, and can efficiently interconnect over one hundred nodes. Each node has a dedicated output channel and an array of receivers, with one receiver dedicated to every other node's output channel. The SOME-Bus eliminates the need for global arbitration and provides bandwidth that scales directly with the number of nodes in the system. Under the distributed shared memory (DSM) paradigm, the SOME-bus allows strong integration of the transmitter, receiver and cache controller hardware to produce a highly integrated system-wide cache coherence mechanism. Backward Error Recovery fault-tolerance techniques can rely on DSM data replication and SOME-Bus broadcasts with little additional network traffic and corresponding performance degradation. This paper uses extensive simulation to examine the performance of the SOME-Bus architecture under DSM and Backward Error Recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.