-We develop a simple lattice model to describe the hydrodynamic influence of active mass transport along bio-filaments on freely diffusing mass in the cell. To quantify the overall mass transport we include Brownian motion, excluded volume interactions, active transport along the filaments, and hydrodynamic interactions. The model shows that the hydrodynamic forces induced by molecular motors attached to the filaments give rise to a non-negligible flux close to the filament. This additional flux appears to have two effects. Depending on the degree of filament occupation it can exert a sufficiently large influence on unbound motors and cargo to modify their transport and also regulate the flux of motors bound to the filament. We expect such a mechanism is important in situations found in plant cells, where directional transport spans the entire cell. In particular, it can explain the cytoplasmic streaming observed in plant cells.
SummaryPlant cells show myosin-driven organelle movement, called cytoplasmic streaming. Soluble molecules, such as metabolites do not move with motor proteins but by diffusion. However, is all of this streaming active motor-driven organelle transport? Our recent simulation study (Houtman et al., 2007) shows that active transport of organelles gives rise to a drag in the cytosol, setting up a hydrodynamic flow, which contributes to a fast distribution of proteins and nutrients in plant cells. Here, we show experimentally that actively transported organelles produce hydrodynamic flow that significantly contributes to the movement of the molecules in the cytosol. We have used fluorescence recovery after photobleaching and show that in tobacco Bright Yellow 2 (BY-2) suspension cells constitutively expressing cytoplasmic green fluorescent protein (GFP), free GFP molecules move faster in cells with active transport of organelles than in cells where this transport has been inhibited with the general myosin inhibitor BDM (2,3-butanedione monoxime). Furthermore, we show that the direction of the GFP movement in the cells with active transport is the same as that of the organelle movement and that the speed of the GFP in the cytosol is proportional to the speed of the organelle movement. In large BY-2 cells with fast cytoplasmic streaming, a GFP molecule reaches the other side of the cell approximately in the similar time frame (about 16 s) as in small BY-2 cells that have slow cytoplasmic streaming. With this, we suggest that hydrodynamic flow is important for efficient transport of cytosolic molecules in large cells. Hydrodynamic flow might also contribute to the movement of larger structures than molecules in the cytoplasm. We show
Medication knowledge is an early stage of self-management, yet many adolescents cannot report the dose of IBD medications, nor know the side effects of immunosuppression. This finding persists into late adolescence, which has ramifications for patients as they separate from parents for college or work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.