Studies were conducted to determine the dietary amounts of deoxynivalenol (DON; vomitoxin) in dog and cat food that are required to produce overt signs of toxicity (e.g., vomiting or reduced food intake). Wheat naturally contaminated with 37 mg of DON/kg was used to manufacture pet foods containing 0, 1, 2, 4, 6, 8, and 10 mg of DON/kg. Deoxynivalenol concentration in pet food following manufacture was unchanged, indicating that the toxin was stable during conventional extrusion processing. Dogs previously fed DON-contaminated food were able to preferentially select uncontaminated food. Dogs not previously exposed to DON-contaminated food consumed equal quantities of contaminated and uncontaminated food. There was no effect of 6 mg of DON/kg on dog food digestibility. Food intake of dogs was significantly reduced by DON concentrations greater than 4.5 +/- 1.7 mg/kg, and DON greater than 7.7 +/- 1.1 mg/kg reduced cat food intake. Vomiting by dogs and cats was commonly observed at the 8 and 10 mg DON levels.
Stackless traversal techniques are often used to circumvent memory bottlenecks by avoiding a stack and replacing return traversal with extra computation. This paper addresses whether the stackless traversal approaches are useful on newer hardware and technology (such as CUDA). To this end, we present a novel stackless approach for implicit kd-trees, which exploits the benefits of index-based node traversal, without incurring extra node visitation. This approach, which we term Kd-Jump, enables the traversal to immediately return to the next valid node, like a stack, without incurring extra node visitation (kd-restart). Also, Kd-Jump does not require global memory (stack) at all and only requires a small matrix in fast constant-memory. We report that Kd-Jump outperforms a stack by 10 to 20% and kd-restart by 100%. We also present a Hybrid Kd-Jump, which utilizes a volume stepper for leaf testing and a run-time depth threshold to define where kd-tree traversal stops and volume-stepping occurs. By using both methods, we gain the benefits of empty space removal, fast texture-caching and realtime ability to determine the best threshold for current isosurface and view direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.