Recently developed lead‐free incipient piezoceramics are promising candidates for off‐resonance actuator applications with their exceptionally large electromechanical strains. Their commercialization currently faces two major challenges: high electric field required for activating the large strains and large strain hysteresis. It is demonstrated that design of a relaxor/ferroelectric composite provides a highly effective way to resolve both challenges. Experimental results in conjunction with numerical simulations provide key parameters for the development of viable incipient piezoceramics.
The lattice-matched growth of the direct band gap material Ga(NAsP) is a seminal concept for the monolithic integration of III/V laser on a silicon substrate. Here, we report on the growth, characterization, and lasing properties of Ga(NAsP)/(BGa)(AsP) multi quantum well heterostructures embedded in (BGa)P cladding layers which were deposited on an exactly oriented (001) Si substrate. Structural investigations confirm a high crystal quality without any indication for misfit or threading dislocation formation. Laser operation between 800 nm and 900 nm of these broad area device structures was achieved under optical pumping as well as electrical injection for temperatures up to 150 K. This “proof of principle” points to the enormous potential of Ga(NAsP) as an optical complement to Si microelectronics.
Electric field-induced phase transitions in [110]c-oriented BaTiO3 single crystals were studied by macroscopic electrical measurements in the temperature range from 20 °C to 50 °C. Discontinuous, hysteretic jumps in the polarization and strain were observed, indicating a tetragonal ↔ orthorhombic phase transition. The critical electric field to induce the transition was found to shift to higher values with increasing temperature. The Landau-Devonshire theory was used to analyze the observed electric field-induced T ↔ O phase transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.