Castor (Ricinus communis L.) is one of the oldest cultivated crops, but currently it represents only 0.15% of the vegetable oil produced in the world. Castor oil is of continuing importance to the global specialty chemical industry because it is the only commercial source of a hydroxylated fatty acid. Castor also has tremendous future potential as an industrial oilseed crop because of its high seed oil content (more than 480 g kg−1), unique fatty acid composition (900 g kg−1 of ricinoleic acid), potentially high oil yields (1250–2500 L ha−1), and ability to be grown under drought and saline conditions. The scientific literature on castor has been generated by a relatively small global community of researchers over the past century. Much of this work was published in dozens of languages in journals that are not easily accessible to the scientific community. This review was conducted to provide a compilation of the most relevant historic research information and define the tremendous future potential of castor. The article was prepared by a group of 22 scientists from 16 institutions and eight countries. Topics discussed in this review include: (i) germplasm, genetics, breeding, biotic stresses, genome sequencing, and biotechnology; (ii) agronomic production practices, diseases, and abiotic stresses; (iii) management and reduction of toxins for the use of castor meal as both an animal feed and an organic fertilizer; (iv) future industrial uses of castor including renewable fuels; (v) world production, consumption, and prices; and (vi) potential and challenges for increased castor production.
Knowledge about the Brazilian fungal diversity was, until 2010, recorded in few taxonomy and ecology publications, as well as in a handful of species lists. With the publication of the Catálogo de Plantas e Fungos do Brasil and the continued availability of an online list, it has been possible to aggregate this dispersed knowledge. The version presented here adds 2,111 species names to the 3,608 listed in 2010. A total of 5,719 species of fungi distributed in 1,246 genera, 102 orders and 13 phyla represents a considerable increase over the last five years, when only 924 genera and 78 orders were registered. Basidiomycota (2,741 species in 22 orders) and Ascomycota (1,881 species in 41 orders) predominate over other groups. The Atlantic Rainforest has the largest number of records, with 3,017 species, followed by Amazon Rainforest (1,050), Caatinga (999), Cerrado (638) and Pampa and Pantanal with 84 and 35 species, respectively. The Northeast region has the greatest richness (2,617 species), followed by Southeast (2,252), South (1,995), North (1,301) and Central-West (488 species). Regarding the States of the Federation, São Paulo with 1,846 species, Pernambuco with 1,611 and Rio Grande do Sul with 1,377 species are the most diverse. Key words: Taxonomy, mycology, brazilian regions. ResumoAté 2010, o conhecimento sobre a diversidade de fungos do Brasil estava registrado em publicações esparsas de taxonomia e ecologia e em algumas poucas listas de espécies. Com a publicação do Catálogo de Plantas e Fungos do Brasil, e a disponibilização da lista online, tem sido possível agregar o conhecimento disperso. A versão ora apresentada acrescenta 2.111 nomes de espécies aos 3.608 listados em 2010. São citadas 5.719 espécies de fungos distribuídas em 1.246 gêneros, 102 ordens e 13 divisões, consistindo em considerável aumento em relação a 2010, quando estavam registrados 924 gêneros e 78 ordens. Predominam os Basidiomycota (2.741 espécies, em 22 ordens) e Ascomycota (1.881 espécies, em 41 ordens). A Mata Atlântica possui a maior quantidade de registros, com 3.017 espécies, seguido pela Amazonia (1.050), Caatinga (999), Cerrado (638) e Pampa e Pantanal com 84 e 35 espécies, respectivamente. A região Nordeste tem a maior riqueza (2.617 especies), seguida pelo Sudeste (2.252), Sul (1.995), Norte (1.301) e Centro Oeste (488 espécies). Em relação aos Estados da Federação, São Paulo (1.846 espécies), Pernambuco (1.611) e Rio Grande do Sul (1.377) são os mais diversos. Palavras-chave: Taxonomia, micologia, regiões brasileiras.
Macrophomina is a genus belonging to Botryosphaeriaceae that comprises well-known necrotrophic pathogens related to hundreds of plant hosts around the world. Historically, M. phaseolina is the causal agent of charcoal rot in several crops, mainly in tropical and subtropical areas around the world. However, after a recent genetic diversity study using morphological and molecular approaches, which resulted in the epitypification of M. phaseolina, and the description of a new Macrophomina species associated with charcoal rot disease, the hypothesis that other cryptic species could be present under the name M. phaseolina was raised. Previous studies in Brazil revealed a high genetic diversity and different levels of aggressiveness of M. phaseolina isolates associated with charcoal rot in oilseed crops. Thus, the aim of the present study was, through phylogenetic and morphological studies, to determine if isolates of Macrophomina obtained from different oilseed crops represent a single species or distinct taxa. Based on the results obtained, it was possible to identify three different Macrophomina species: M. phaseolina, M. pseudophaseolina and a new phylogenetic species, M. euphorbiicola. This is first report of M. pseudophaseolina in Brazil causing charcoal rot on Arachis hypogaea, Gossypium hirsutum and Ricinus communis and associated with seed decay of Jatropha curcas. In addition, a novel species described in the present study, M. euphorbiicola, is reported as the etiological agent of the charcoal rot on R. communis and Jatropha gossypifolia.
A zygomycetous fungus causing fruit soft rot was found on Sygyzium cumini in Northeast Brazil. Based on morphological and phylogenetic analyses, the fungus was identified as Gilbertella persicaria. This is the first report of this fungus causing the decay of S. cumini fruit worldwide.
Charcoal rot, caused by Macrophomina phaseolina, is one of the most important diseases of castor (Ricinus communis) in the growing regions of Northeastern Brazil, particularly in the State of Bahia, which concentrates 65% of the country's production. The pathogenicity and aggressiveness of the charcoal rot pathogen was assessed in twenty-seven isolates of M. phaseolina obtained from six plant species: Ricinus communis (n=21), Gossypium hirsutum (n=2), Sesamum indicum (n=1), Helianthus annuus (n=1), Jatropha gossypifolia (n=1) and Arachis hypogaea (n=1). All isolates were pathogenic and exhibited a range of aggressiveness towards BRS Energia cultivar regardless of their host of origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.