The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 μm, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300-350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature T int ∼300-350 K, we find a dissipation factor Q′∼2×10 5 -10 6 , larger than Neptune's Q′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.
We present a new generation of substellar atmosphere and evolution models, appropriate for application to studies of L, T, and Y-type brown dwarfs and self-luminous extrasolar planets. The atmosphere models describe the expected temperature-pressure profiles and emergent spectra of atmospheres in radiative-convective equilibrium with effective temperatures and gravities within the ranges 200 ≤ T eff ≤ 2400 K and 2.5 ≤ log g ≤ 5.5. These ranges encompass masses from about 0.5 to 85 Jupiter masses for a set of metallicities ([M/H] = −0.5 to +0.5), C/O ratios (from 0.5 to 1.5 times that of solar), and ages. The evolution tables describe the cooling of these substellar objects through time. These models expand the diversity of model atmospheres currently available, notably to cooler effective temperatures and greater ranges in C/O. Notable improvements from past such models include updated opacities and atmospheric chemistry. Here we describe our modeling approach and present our initial tranche of models for cloudless, chemical equilibrium atmospheres. We compare the modeled spectra, photometry, and evolution to various datasets.
Future NASA concept missions that are currently under study, like Habitable Exoplanet Imaging Mission (HabEx) & Large Ultra-Violet Optical Infra Red (LUVOIR) Surveyor, would discover a large diversity of exoplanets. We propose here a classification scheme that distinguishes exoplanets into different categories based on their size and incident stellar flux, for the purpose of providing the expected number of exoplanets observed (yield) with direct imaging missions. The boundaries of this classification can be computed using the known chemical behavior of gases and condensates at different pressures and temperatures in a planetary atmosphere. In this study, we initially focus on condensation curves for sphalerite ZnS, H 2 O, CO 2 and CH 4 . The order in which these species condense in a planetary atmosphere define the boundaries between different classes of planets. Broadly, the planets are divided into rocky (0.5 − 1.0R ⊕ ), super-Earths (1.0 − 1.75R ⊕ ), sub-Neptunes (1.75 − 3.5R ⊕ ), sub-Jovians (3.5 − 6.0R ⊕ ) and Jovians (6 − 14.3R ⊕ ) based on their planet sizes, and 'hot', 'warm' and 'cold' based on the incident stellar flux. We then calculate planet occurrence rates within these boundaries for different kinds of exoplanets, η planet , using the community
The upcoming deployment of the James Webb Space Telescope will dramatically advance our ability to characterize exoplanet atmospheres, both in terms of precision and sensitivity to smaller and cooler planets. Disequilibrium chemical processes dominate these cooler atmospheres, requiring accurate photochemical modeling of such environments. The host star’s UV spectrum is a critical input to these models, but most exoplanet hosts lack UV observations. For cases in which the host UV spectrum is unavailable, a reconstructed or proxy spectrum will need to be used in its place. In this study, we use the MUSCLES catalog and UV line scaling relations to understand how well reconstructed host star spectra reproduce photochemically modeled atmospheres using real UV observations. We focus on two cases: a modern Earth-like atmosphere and an Archean Earth-like atmosphere that forms copious hydrocarbon hazes. We find that modern Earth-like environments are well-reproduced with UV reconstructions, whereas hazy (Archean Earth) atmospheres suffer from changes at the observable level. Specifically, both the stellar UV emission lines and the UV continuum significantly influence the chemical state and haze production in our modeled Archean atmospheres, resulting in observable differences in their transmission spectra. Our modeling results indicate that UV observations of individual exoplanet host stars are needed to accurately characterize and predict the transmission spectra of hazy terrestrial atmospheres. In the absence of UV data, reconstructed spectra that account for both UV emission lines and continuum are the next best option, albeit at the cost of modeling accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.