Intrusions of warm circumpolar deep water onto the Antarctic continental shelf are thought to drive accelerated loss of Antarctic glacial ice mass by triggering melt at the ice shelf grounding line. However, the mechanisms responsible for driving on‐shelf circumpolar deep water intrusions are not well understood. Here we examine how sea surface height (SSH) anomalies propagating around the Antarctic coastline as coastal‐trapped waves can drive warm water intrusions through changes in bottom Ekman transport. A wind perturbation motivated by the recent intensification and poleward shift of the southern annular mode during its positive phase is applied over Eastern Antarctica between 20°E and 120°E in two global ocean sea‐ice models (1/4° and 1/10°) and a single‐layer shallow water model. The changes in winds generate a drop in coastal SSH that propagates around Antarctica as a barotropic Kelvin wave. The SSH drop is accompanied by a barotropic flow, which alters the bottom stress, generating an onshore transport of warm water wherever thermal gradients are favorable. We estimate the resulting anomalous bottom Ekman flow and use temperature gradients calculated from the Southern Ocean State Estimate, along with the 1/4° and 1/10° models, to evaluate the resultant heat advection. We find that this mechanism can drive warming of up to 0.7 °C along the West Antarctic Peninsula within a year, depending on the mean state of the cross‐shelf temperature gradient and the barotropic flow strength. Over longer time scales, warming eventually ceases due to saturation of the SSH field and arrest of the Ekman transport by buoyancy forces.
Spin-orbit coupling is a single-particle phenomenon known to generate topological order, and electron-electron interactions cause ordered many-body phases to exist. The rich interplay of these two mechanisms is present in a broad range of materials, and has been the subject of considerable ongoing research and controversy. Here we demonstrate that interacting two-dimensional electron systems with strong spin-orbit coupling exhibit a variety of time reversal symmetry breaking phases with unconventional spin alignment. We first prove that a Stoner-type criterion can be formulated for the spin polarization response to an electric field, which predicts that the spin polarization susceptibility diverges at a certain value of the electron-electron interaction strength. The divergence indicates the possibility of unconventional ferromagnetic phases even in the absence of any applied electric or magnetic field. This leads us, in the second part of this work, to study interacting Rashba spin-orbit coupled semiconductors in equilibrium in the Hartree-Fock approximation as a generic minimal model. Using classical Monte-Carlo simulations we construct the complete phase diagram of the system as a function of density and spin-orbit coupling strength. It includes both an outof-plane spin polarized phase and in-plane spin-polarized phases with shifted Fermi surfaces and rich spin textures, reminiscent of the Pomeranchuk instability, as well as two different Fermi-liquid phases having one and two Fermi surfaces, respectively, which are separated by a Lifshitz transition. We discuss possibilities for experimental observation and useful application of these novel phases, especially in the context of electric-field-controlled macroscopic spin polarizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.