Introduction Studies in xenograft models and experimental models of metastasis have implicated several β3 integrinexpressing cell populations, including endothelium, platelets and osteoclasts, in breast tumor progression. Since orthotopic human xenograft models of breast cancer are poorly metastatic to bone and experimental models bypass the formation of a primary tumor, however, the precise contribution of tumorspecific αvβ3 to the spontaneous metastasis of breast tumors from the mammary gland to bone remains unclear.
Rheumatoid arthritis is characterized by progressive synovial inflammation and joint destruction. While matrix metalloproteinases (MMPs) are implicated in the erosion of unmineralized cartilage, bone destruction involves osteoclasts, the specialized cells that resorb calcified bone matrix. RANK ligand (RANKL) expressed by stromal cells and T cells, and its cognate receptor, RANK, were identified as a critical ligand-receptor pair for osteoclast differentiation and survival. A decoy receptor for RANKL, osteoprotegerin, (OPG) impinges on this system and regulates osteoclast numbers and activity. RANKL is also expressed in collagen-induced arthritis (CIA) in which focal collections of osteoclasts are prominent at sites of bone destruction. To determine the role of RANK signaling events in the effector phase of CIA, we investigated effects of Fc-osteoprotegerin fusion protein (Fc-OPG) in CIA. After induction of CIA in Dark Agouti rats, test animals were treated with or without Fc-OPG (3 mg/kg/day) subcutaneously for 5 days, beginning at the onset of disease. Paraffin-embedded joints were then analyzed histologically and the adjacent bone assessed by histomorphometry. Osteoclasts were identified using TRAP staining and expression of the mRNA for OPG and RANKL was identified by in situ hybridization. The results indicated that short-term Fc-OPG effectively prevented joint destruction, even though it had no impact on the inflammatory aspects of CIA. In arthritic joints, Fc-OPG depleted osteoclast numbers by over 75% and diminished bone erosion scores by over 60%. Although cartilage loss was also reduced by Fc-OPG, the effects on cartilage were less striking than those on bone. In arthritic joints OPG mRNA was highly expressed and co-localized with RANK ligand, and treatment with Fc-OPG did not affect the expression of endogenous RANKL or OPG mRNA. These data demonstrate that short term Fc-OPG treatment has powerful anti-erosive effects, principally on bone, even though synovitis is not affected. These findings indicate the potential utility of disrupting RANK signaling to preserve skeletal integrity in inflammatory arthritis.
Breast cancer affects approximately one woman in twelve and kills more women than any other cancer. If detected early, patients have a five year survival rate of 66%, but once metastatic disease has developed, there is no effective treatment. About 70% of patients with metastatic disease have bone involvement, while lungs and liver are the other common targets. Bone metastases cause severe pain, pathological fractures and hypercalcaemia and thus are a significant clinical problem. The development of new therapies for metastatic breast carcinoma depends on a better understanding of the mechanism of homing of the tumour cells to bone, liver and lungs and the factors required for their growth in these organs. Research on mechanisms of breast cancer metastasis, particularly to bone, has relied on in vitro studies or on tumour models in which the inoculation route is designed to promote delivery of tumour cells to a specific organ. Metastases in bone are achieved by inoculation into the right ventricle of the heart. To our knowledge there has been no report of a model of metastatic spread from the mammary gland to distant sites which reliably includes bone. In this paper, we describe our recent development of a novel murine model of metastatic breast carcinoma. The new model is unique in that the pattern of metastatic spread closely resembles that observed in human breast cancer. In particular, these murine breast tumours metastasise to bone from the primary breast site and cause hypercalcaemia, characteristics not normally found in murine tumours, but common in human disease. Furthermore, in a preliminary characterisation of this model, we show that secretion of parathyroid hormone-related protein, a role for which has been implicated in breast cancer spread to bone, correlates with metastasis to bone. This model therefore provides an excellent experimental system in which to investigate the factors that control metastatic spread of breast cancer to specific sites, particularly bone. The special advantage of this system is that it involves the whole metastasis process, beginning from the primary site. Existing models consider mechanisms that pertain to growth of tumour once the site has been reached. An understanding of the regulation of these factors by potential therapeutic agents could lead to improvement in therapies designed to combat metastatic disease. For the first time, this development will allow exploration of the molecular basis of site-specific metastasis of breast cancer to bone in a clinically relevant model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.