The authors report on the fabrication of a top-gate ZnO thin-film transistor (TFT) with a polymer dielectric/ferroelectric double-layer gate insulator that was formed on patterned ZnO through a sequential spin-casting process of 450-nm-thick poly-4-vinylphenol (PVP) and 200-nm-thick poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)]. Compared to the single P(VDF/TrFE) layer, double layer shows remarkably reduced leakage current with the aid of the PVP buffer. TFT with the PVP/P(VDF/TrFE) double layer exhibits a field effect mobility of 0.36cm2∕V and a large memory hysteresis in the transfer characteristics due to the ferroelectric P(VDF/TrFE). The retention of the device lasted over 2h.
We report on the photoresponse from tetracene-based and pentacene-based thin-film transistors (TFTs) with semitransparent NiOx source/drain electrodes and SiO2∕p+-Si substrate. Both organic TFTs have been fabricated with identical channel thickness and device geometry. Compared with pentacene-based TFTs, the tetracene-TFT exhibited superior potentials as a photodetector in the visible and ultraviolet range although it showed a field mobility (μ=0.003cm2∕Vs) which is two orders of magnitude lower than that of the pentacene-based TFT (μ=∼0.3cm2∕Vs). The tetracene-TFT displayed a high photo-to-dark current ratio (Iph∕Idark) of 3×103, while that of the pentacene-TFT was only ∼10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.