Discrimination between UXO and harmless objects is particularly difficult in highly contaminated sites where two or more objects are simultaneously present in the field of view of the sensor and produce overlapping signals. The first step in overcoming this problem is estimating the number of targets. In this work an orthonormalized volume magnetic source (ONVMS) approach is introduced for estimating the number of targets, along with their locations and orientations. The technique is based on the discrete dipole approximation, which distributes dipoles inside the computational volume. First, a set of orthogonal functions are constructed using fundamental solutions of the Helmholtz equations (i.e., Green's functions). Then, the scattered magnetic field is approximated as a series of these orthogonal functions. The magnitudes of the expansion coefficients are determined directly from the measurement data without solving an ill-posed inverse-scattering problem. The expansion coefficients are then used to determine the amplitudes of the responding volume magnetic dipoles. The algorithm's superior performance and applicability to live UXO sites are illustrated by applying it to the bi-static TEMTADS multi-target data sets collected by NRL personnel at the Aberdeen Proving Ground UXO teststand site.
Computer simulation of electrostatic discharge (ESD) for simplified objects is described and compared to measured transient fields of human/metal ESD. The simulation algorithm uses the method of moments in time domain, coupled with nonlinear arc resistance model. Transient currents and fields are analyzed from the electromagnetic compatibility (EMC) point of view. Validation of the numerical simulation is done by comparison to experimental data. The simulated structure models the human/metal ESD in its peak current and field values and their derivatives reasonably well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.