Direct visual observations of a high Reynolds number jet are presented. The jet consists of the exhaust plume of a TITAN IV rocket motor, which was discharged upward during ground-based testing producing an estimated Reynolds number of about 2×108. An overall view of the first 2000 ft of the resulting plume is observed and discussed. Image processing is used to enhance the plume appearance and reveal significant events associated with the jet evolution. The most striking finding is the progression of organized structures up through the jet, similar to those observed in laboratory flows at Reynolds numbers of 104. Significant differences are also seen between the time-averaged scalar field, which appears more Gaussian, and the instantaneous scalar field, which appears more top hat. It is concluded that the organization is associated with inviscid instability mechanisms that are Reynolds number independent, and that large-scale organization is an integral part of the evolution of such flows, and not a remnant of transitional behavior.
A method is developed to capture the distribution of surface temperature while simultaneously imaging the bubble motions in diabatic flow boiling in a horizontal minichannel. Liquid crystal thermography is used to obtain highly resolved surface temperature measurements on the uniformly heated upper surface of the channel. High-speed images of the flow field are acquired simultaneously and are overlaid with the thermal images. The local surface temperature and heat transfer coefficient can be analyzed with the knowledge of the nucleation site density and location, and bubble motion and size evolution. The horizontal channel is 1.2 mm high × 23 mm wide × 357 mm long, and the working fluids are Novec 649 and R-11. Optical access is through a machined glass plate which forms the bottom of the channel. The top surface is an electrically heated 76 μm-thick Hastelloy foil held in place by a water-cooled aluminum and glass frame. The heat loss resulting from this construction is computed using a conduction model in Fluent. The model is driven by temperature measurements on the foil, glass plate and aluminum frame. This model produces a corrected value for the local surface heat flux and enables the computation of the bulk fluid temperature and heat transfer coefficient along the channel. The streamwise evolution of the heat transfer coefficient for single-phase laminar flow is compared to theoretical values for a uniform-flux boundary condition. Examples of the use of the facility for visualizing subcooled two-phase flows are presented. These examples include measurements of the surface temperature distribution around active nucleation sites and the construction of boiling curves for locations along the test surface. Points on the curve can be associated with specific image sequences so that the role of mechanisms such as nucleation and the sliding of confined bubbles may be discerned.
Measurements that illustrate the enhancement of heat transfer caused by a bubble sliding under an inclined surface are reported. The data were obtained on an electrically heated thin-foil surface that was exposed on its lower side to FC-87 and displayed the output of a liquid crystal coating on the upper (dry) side. A sequence of digital images was obtained from two cameras: one that recorded the response of the liquid crystal and one that recorded images of the bubble as it moved along the heated surface. With this information, the thermal imprint of the bubble was correlated to its motion and position. A bubble generator that produced FC-87 bubbles of repeatable and controllable size was also developed for this study. The results show that both the microlayer under a sliding bubble and the wake behind the bubble contribute substantially to the local heat transfer rate from the surface. The dynamic behavior of the bubbles corresponded well with studies of the motion of adiabatic bubbles under inclined plates, even though the bubbles in the present study grew rapidly because of heat transfer from the wall and the surrounding superheated liquid. Three regimes of bubble motion were observed: spherical, ellipsoidal and bubble-cap. The regimes depend upon bubble size and velocity. A model of the heat transfer within the microlayer was used to infer the microlayer thickness. Preliminary results indicate a microlayer thickness of 40–50 μm for bubbles in FC-87 and a plate inclination of 12 deg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.