During the 2016 experimental campaign of NSTX-Upgrade (NSTX-U), long L-mode and reproducible sawtoothing plasmas have been achieved that were previously not accessible on NSTX. This provides a good opportunity to investigate the conditions of sawtooth appearance and to study their effects on fast ion confinement and redistribution in spherical tokamaks. The Fast-Ion D-alpha (FIDA) and Solid State Neutral Particle Analyzer (SSNPA) diagnostics on NSTX-U each has two subsystems with one subsystem more sensitive to passing particles and the other one more sensitive to trapped particles. It has been observed on both diagnostics that the passing particles are strongly expelled from the plasma core to the plasma edge during sawtooth crashes while trapped fast ions are weakly affected. The tangential-FIDA (t-FIDA) system which is most sensitive to passing particles saw a signal drop in the region inside the inversion radius (˜125cm), while an increase at the outer region. The neutron rate can drop as much as 13% during sawtooth crashes. This phenomenon is similar to previous observations in DIII-D and ASDEX Upgrade conventional tokamaks. Detailed data analysis and modelling are being performed to quantity the effects of sawtooth crashes on fast-ion redistribution and to compare with the Kadomtsev sawtooth model. *Work supported by US DOE.
The mission of the spherical tokamak NSTX-U is to explore the physics that drives core and pedestal transport and stability at high- and low collisionality, as part of the development of the spherical tokamak (ST) concept towards a compact, low-cost ST-based pilot plant. NSTX-U will ultimately operate at up to 2 MA and 1 T with up to 12 MW of neutral beam injection power for 5 s. NSTX-U will operate in a regime where electromagnetic instabilities are expected to dominate transport, and beam-heated NSTX-U plasmas will explore a portion of energetic particle parameter space that is relevant for both -heated conventional and low aspect ratio burning plasmas. NSTX-U will also develop the physics understanding and control tools to ramp-up and sustain high performance plasmas in a fully-noninductive fashion. NSTX-U began research operations in 2016, but a failure of a divertor magnetic field coil after ten weeks of operation resulted in the suspension of operations and initiation of recovery activities. During this period, there has been considerable work in the area of analysis, theory and modeling of data from both NSTX and NSTX-U, with a goal of understanding the underlying physics to develop predictive models that can be used for high-confidence projections for both ST and higher aspect ratio regimes. These studies have addressed issues in thermal plasma transport, macrostability, energetic particlet-driven instabilities at ion-cyclotron frequencies and below, and edge and divertor physics.
Initial tests on the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 083015) device suggest that introducing energy selectivity for sawtooth induced fast ion redistribution is required to improve the agreement between experimental and simulated quantities such as neutron rate and Fast-Ion D-Alpha profiles. The aim of this work is to assess the requirements to properly describe the behaviour of fast ions during a sawtooth crash for predictive sawtooth simulations. As the first step, in this work, we use the particle-following Orbit code to characterize the redistribution of fast particles. In order for a sawtooth crash to be simulated, a spatial and temporal displacement is implemented into the Orbit code. The perturbation amplitude is determined by comparison with experimental measurement of the neutron rate drop. The characteristics of fast ions with different orbit types are investigated in phase and real space. Due to a sawtooth crash, fast ion energy and angular momentum are modified resulting in the redistribution in phase space and orbit type change. The redistribution of fast ions in real space shows that the sawtooth instability brings different effect on fast particles with different orbit types as observed in experiments. The initial interpretative Transp simulation using the so-called kick model based on the Orbit modeling result shows an improvement of fast ion redistribution before and after a sawtooth crash but the neutron rate still has discrepancy compared to the experimental measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.