A novel indigenous Pseudomonas aeruginosa strain (MTCC 4996) isolated from a pulp industrial effluent-contaminated site was capable of degrading phenol up to a concentration of 1,300 mg L -1 within 156 h. Complete degradation was observed at pH values ranging from 6.0 to 10.0 and temperatures from 15 to 45°C, with an optimum pH of 7.0 and optimum temperature of 37°C. At an optimum shaking speed of 100-125 rpm, 100% degradation was observed in 66 h, as compared to 84 h under static conditions. Glucose and peptone at lower concentrations enhanced phenol degradation. The rate of phenol degradation was most sensitive to added Hg. Low concentrations of Fe, Cu, Pb, Zn, and Mn stimulated and enhanced the rate of degradation.
A thermo-alkalophilic bacterium isolated from textile mill effluent samples and identified as a Bacillus sp., on the basis of biochemical tests. The selected bacterium showed high decolorization activity in static condition as compared to shaking condition and the maximum 1000 mg l-1 Direct Blue-14 dye decolorization was takes place in 72 h. The optimum physical parameters such as temperature 40-50 °C, pH 8.0 with 2.5% (w/v) of nitrogen source and 4% (w/v) glucose were required for the decolorization of Direct Blue-14 from this bacterium. UV–Visible analyses and colorless bacterial cells suggested that Bacillus sp. exhibited decolorizing activity through biodegradation, rather than inactive surface adsorption. The degraded dye metabolites are analyzed by TLC and diazotization, carbylamines, Ames test for individual metabolite indicates biotransformation of Direct Blue-14 into aromatic amine and non-toxic aromatic metabolites. These results suggest that the isolated organism Bacillus sp. as a useful tool to treat waste water containing azo dyes at static condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.