Microlens arrays fabricated by a direct ink-jet printing of UVcurable hybrid polymer are reported. A periodic pattern of polymer drops was ink-jet printed on the surface-treated glass substrate and cured in the UV-light. Using this simple technique, we demonstrated periodic arrays of almost semi-spherical microlenses of 50 µm diameter size and a focal distance of 48µm. The optical characteristics of solitary µ-lenses and arrays comprising up to 64x64 microlenses are measured both in the near-and farfield zones. Large numerical aperture and short focal distance make the inkjet printing of microlenses very attractive for applications in optical interconnects, large 2D VCSEL arrays and pixelated imagine sensors utilizing CCD or SPAD arrays, offering thus an efficient, simple and a cheap alternative to the conventionally used photolithography technique.
We analyze theoretically the superradiant emission (SR) in semiconductor edge-emitting laser heterostructures using InGaN/GaN heterostructure quantum well (QW) as a model system. The generation of superradiant pulses as short as 500 fs at peak powers of over 200 W has been predicted for InGaN/GaN heterostructure QWs with the peak emission in the blue/violet wavelength range. Numerical simulations based on semiclassical traveling wave Maxwell-Bloch equations predict building up of macroscopic coherences in the ensemble of electrons and holes during SR pulse formation. We show that SR is covered by the Ginzburg-Landau equation for a phase transition to macroscopically coherent state of matter. The presented theory is applicable to other semiconductor materials.
We have obtained a closed-form expression for the threshold of Risken-Nummedal-Graham-Haken (RNGH) multimode instability in a Fabry-Pérot (FP) cavity quantum cascade laser (QCL). This simple analytical expression is a versatile tool that can easily be applied in practical situations which require analysis of QCL dynamic behavior and estimation of its RNGH multimode instability threshold. Our model for a FP cavity laser accounts for the carrier coherence grating and carrier population grating as well as their relaxation due to carrier diffusion. In the model, the RNGH instability threshold is analyzed using a second-order bi-orthogonal perturbation theory and we confirm our analytical solution by a comparison with the numerical simulations. In particular, the model predicts a low RNGH instability threshold in QCLs. This agrees very well with experimental data available in the literature.
This paper describes a novel method to fabricate polymer MEMS based on the inkjet printing of SU-8, with a special emphasis on integrated micro-optical lens arrays. Inkjet control parameters are optimized in order to enable a stable and reproducible ejection of SU-8 drops in both continuous and drop-on-demand (DOD) modes. Arbitrary patterns of single and multiple polymer drops and arrays of convex microlenses are printed on different substrates. The influence of surface wetting properties on the size and the shape of the printed patterns is investigated. The optical properties of the microlenses are investigated in details. A model for inkjet printing of high-viscous functional materials for polymer MEMS has been used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.