We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered light spectrum as well as an altered Rabi frequency are predicted to be inherent to such systems. In particular, dipole radiation at the Rabi frequency appears to be possible. Since the Rabi frequency is controlled by the strength of the coupling electromagnetic field, the effect can serve for the frequency-tuned parametric amplification and generation of electromagnetic waves. Manifestation of the effect is discussed for III-nitride quantum dots with strong built-in electric field breaking the inversion symmetry. Terahertz emission from arrays of such quantum dots is shown to be experimentally observable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.