Lake 227, a small lake in the Precambrian Shield at the Experimental Lakes Area (ELA), has been fertilized for 37 years with constant annual inputs of phosphorus and decreasing inputs of nitrogen to test the theory that controlling nitrogen inputs can control eutrophication. For the final 16 years (1990 -2005), the lake was fertilized with phosphorus alone. Reducing nitrogen inputs increasingly favored nitrogen-fixing cyanobacteria as a response by the phytoplankton community to extreme seasonal nitrogen limitation. Nitrogen fixation was sufficient to allow biomass to continue to be produced in proportion to phosphorus, and the lake remained highly eutrophic, despite showing indications of extreme nitrogen limitation seasonally. To reduce eutrophication, the focus of management must be on decreasing inputs of phosphorus.cyanobacteria blooms ͉ Experimental Lakes ͉ nutrient limitation ͉ phosphorus
Twenty years of climatic, hydrologic, and ecological records for the Experimental Lakes Area of northwestern Ontario show that air and lake temperatures have increased by 2 degrees C and the length of the ice-free season has increased by 3 weeks. Higher than normal evaporation and lower than average precipitation have decreased rates of water renewal in lakes. Concentrations of most chemicals have increased in both lakes and streams because of decreased water renewal and forest fires in the catchments. In Lake 239, populations and diversity of phytoplankton also increased, but primary production showed no consistent trend. Increased wind velocities, increased transparency, and increased exposure to wind of lakes in burned catchments caused thermoclines to deepen. As a result, summer habitats for cold stenothermic organisms like lake trout and opposum shrimp decreased. Our observations may provide a preview of the effects of increased greenhouse warming on boreal lakes.
The number of combinations of anthropogenic stressors affecting global change is increasing; however, few studies have empirically tested for their interactive effects on ecosystems. Most importantly, interactions among ecological stressors generate nonadditive effects that cannot be easily predicted based on single-stressor studies. Here, we corroborate findings from an in situ mesocosm experiment with evidence from a wholeecosystem manipulation to demonstrate for the first time that interactions between climate and acidification determine their cumulative impact on the food-web structure of coldwater lakes. Interactions among warming, drought, and acidification, rather than the sum of their individual effects, best explained significant changes in planktonic consumer and producer biomass over a 23-year period. Further, these stressors interactively exerted significant synergistic and antagonistic effects on consumers and producers, respectively. The observed prevalence of long-and short-term ecological surprises involving the cumulative impacts of multiple anthropogenic stressors highlights the high degree of uncertainty surrounding current forecasts of the consequences of global change.
Experimental acidification of a small lake from an original pH value of 6.8 to 5.0 over an 8-year period caused a number of dramatic changes in the lake's food web. Changes in phytoplankton species, cessation of fish reproduction, disappearance of the benthic crustaceans, and appearance of filamentous algae in the littoral zone were consistent with deductions from synoptic surveys of lakes in regions of high acid deposition. Contrary to what had been expected from synoptic surveys, acidification of Lake 223 did not cause decreases in primary production, rates of decomposition, or nutrient concentrations. Key organisms in the food web leading to lake trout, including Mysis relicta and Pimephales promelas, were eliminated from the lake at pH values as high as 5.8, an indication that irreversible stresses on aquatic ecosystems occur earlier in the acidification process than was heretofore believed. These changes are caused by hydrogen ion alone, and not by the secondary effect of aluminum toxicity. Since no species of fish reproduced at pH values below 5.4, the lake would become fishless within about a decade on the basis of the natural mortalities of the most long-lived species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.