This paper is a synthesis of earlier results supplemented by new results to define a comprehensive analysis of the growth rate of stress corrosion cracking (SCC). Two mechanisms, anodic dissolution (AD) and hydrogen embrittlement (HE), have been considered to calculate the SCC growth rate of AA 7050-T6 for a surface-breaking crack with blunt tip in an aqueous environment. The relative contributions of each mechanism and their mutual interactions have been quantitatively assessed. Results show that AD provides critical conditions for HE, which explains in part a stepwise propagation of the crack. Finally, the total crack growth rate due to the combined effects of AD and HE has been determined, and numerical results have been compared with experimental data, and a calculation of the crack growth rate for a practical configuration has been presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.