Completion of the DNA sequences of the human genome and that of the nematode Caenorhabditis elegans allows the large-scale identification and analysis of orthologs of human genes in an organism amenable to detailed genetic and molecular analyses. We are determining gene expression profiles in specific cells, tissues, and developmental stages in C. elegans. Our ultimate goal is not only to describe detailed gene expression profiles, but also to gain a greater understanding of the organization of gene regulatory networks and to determine how they control cell function during development and differentiation. The use of C. elegans as a platform to investigate the details of gene regulatory networks has several major advantages. Two key advantages are that it is the simplest multicellular organism for which there is a complete sequence (C. elegans Sequencing Consortium 1998), and it is the only multicellular organism for which there is a completely documented cell lineage (Sulston and Horvitz 1977; Sulston et al. 1983). C. elegans is amenable to both forward and reverse genetics (for review, see Riddle et al. 1997). A 2-week life span and generation time of just 3 days for C. elegans allows experimental procedures to be much shorter, more flexible, and more cost-effective compared to the use of mouse or zebrafish models for genomic analyses. Finally, the small size, transparency, and limited cell number of the worm make it possible to observe many complex cellular and developmental processes that cannot easily be observed in more complex organisms. Morphogenesis of organs and tissues can be observed at the level of a single cell (White et al. 1986). As events have shown, investigating the details of C. elegans biology can lead to fundamental observations about human health and biology (Sulston 1976; Hedgecock et al. 1983; Ellis and Horvitz 1986). We are using complementary approaches to examine gene expression in C. elegans. We are constructing transgenic animals containing promoter green fluorescent protein (GFP) fusions of nematode orthologs of human genes. These transgenic animals are examined to determine the time and tissue expression pattern of the promoter::GFP constructs. Concurrently, we are undertaking serial analysis of gene expression (SAGE) on all developmental stages of intact animals and on selected purified cells. Tissues and selected cells are isolated using a fluorescence activated cell sorter (FACS) to sort promoter::GFP marked cell populations. To date we have purified to near homogeneity cell populations for embryonic muscle, gut, and a subset of neurons. The SAGE and promoter::GFP expression data are publicly available at http://elegans.bcgsc.bc.ca.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.