We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS 2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly impermeable to gas, we are able to apply a pressure difference across suspended membranes to induce biaxial strains. We observe the effect of strain on the energy and intensity of the peaks in the photoluminescence (PL) spectrum, and find a linear tuning rate of the optical band gap of 99 meV/%. This method is then used to study the PL spectra of bilayer and trilayer devices under strain, and to find the shift rates and Grüneisen parameters of two Raman modes in monolayer MoS 2 . Finally, we use this result to show that we can apply biaxial strains as large as 5.6% across micron sized areas, and report evidence for the strain tuning of higher level optical transitions.KEYWORDS: Strain engineering, MoS 2 , photoluminescence, bandgap, Raman spectroscopy, biaxial strain 3 The ability to produce materials of truly nanoscale dimensions has revolutionized the potential for modulating or enhancing the physical properties of semiconductors by mechanical strain 1 . Strain engineering is routinely used in semiconductor manufacturing, with essential electrical components such as the silicon transistor or quantum well laser using strain to improve efficiency and performance 2,3 . Nano-structured materials are particularly suited to this technique, as they are often able to remain elastic when subject to strains many times larger than their bulk counterparts can withstand 4 . For instance, bulk silicon fractures when strained to just 1.2%, whereas silicon nanowires can reach strains of as much as 3.5% 5 . Parameters such as the band gap energy or carrier mobility of a semiconductor, which are often crucial to the electronic or photonic device performance, can be highly sensitive to the application of only small strains. The combination of this sensitivity with the ultra-high strains possible at the nanoscale could lead to an unprecedented ability to modify the electrical or photonic properties of materials in a continuous and reversible manner.Monolayer MoS 2, a 2D atomic crystal, has been shown in both theory 6,7 and experiment [8][9][10][11][12] to be an ideal candidate for strain engineering. It belongs to the class of 2D transition metal dichalcogonides (TMD's), and as a direct-gap semiconductor 13 has received significant interest as a channel material in transistors 14 , photovoltaics 15 and photodetection 16 devices. It has a breaking strain of 6-11% as measured by nanoindentation, which approaches its maximum theoretical strain limit 17 and classifies it as an ultra-strength material. Its electronic structure has also proven to be highly sensitive to strain, with experiments showing that the optical band gap reduces by ~50 meV/% for 4 uniaxial strain 8,11 , and is predicted to reduce by ~100 meV/% for biaxial strain 18,19 . This reversible modulation of the band...
We measured the work of separation of single and few-layer MoS membranes from a SiO substrate using a mechanical blister test and found a value of 220 ± 35 mJ/m. Our measurements were also used to determine the 2D Young's modulus (E) of a single MoS layer to be 160 ± 40 N/m. We then studied the delamination mechanics of pressurized MoS bubbles, demonstrating both stable and unstable transitions between the bubbles' laminated and delaminated states as the bubbles were inflated. When they were deflated, we observed edge pinning and a snap-in transition that are not accounted for by the previously reported models. We attribute this result to adhesion hysteresis and use our results to estimate the work of adhesion of our membranes to be 42 ± 20 mJ/m.
This paper describes an extension to the Combined Hydrology And Stability Model (CHASM) to fully include the effects of vegetation and slope plan topography on slope stability. The resultant physically based numerical model is designed to be applied to site-specific slopes in which a detailed assessment of unsaturated and saturated hydrology is required in relation to vegetation, topography and slope stability. Applications are made to the Hawke's Bay region in New Zealand where shallow-seated instability is strongly associated with spatial and temporal trends in vegetation cover types, and the Mid-Levels region in Hong Kong, an area subject to a variety of landslide mechanisms, some of which may be subject to strong topographic control. An improved understanding of process mechanism, afforded by the model, is critical for reliable and appropriate design of slope stabilization and remedial measures.
We report on a modified transfer technique for atomically thin materials integrated into microelectromechanical systems (MEMS) for studying strain physics and creating strainbased devices. Our method tolerates the non-planar structures and fragility of MEMS while still providing precise positioning and crack-free transfer of flakes. Furthermore, our method used the transfer polymer to anchor the 2D crystal to the MEMS, which reduces the fabrication time and increases the yield, and allowed us to exploit the strong mechanical coupling between the 2D crystal and polymer to strain the atomically thin system. We successfully strained single atomic layers of molybdenum disulfide (MoS 2) with MEMS devices for the first time and achieved greater than 1.3% strain, marking a major milestone for incorporating 2D materials with MEMS. We used the established strain response of MoS 2 Raman and photoluminescence spectra to deduce the strain in our crystals and provide a consistency check. We found good comparison between our experiment and the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.