Dynamical changes in the structure factor of liquid water, S(Q,t), are measured using time-resolved x-ray diffraction techniques with 100 ps resolution. On short time scales following femtosecond optical excitation, we observe temperature-induced changes associated with rearrangements of the hydrogen-bonded structure at constant volume, before the system has had time to expand. We invert this data to extract transient changes in the pair correlation function associated with isochoric heating effects, and interpret these in terms of a decrease in the local tetrahedral ordering.
X-ray diffraction topographs of extremely pure and perfect silicon single
crystals are made using low-energy undulator radiation from a positron storage
ring. Typical defect images observed are rather large round images having a
black-white contrast and a diameter of about 40 µm. Applying the dynamical
theory of x-ray diffraction, the defect contrast is explained by tensile strain
in the lattice around voids close to the exit surface. This discovery of
void-like microdefects explains, at least in part, the reduced density of the
crystal intended to be used for a redefinition of the unit of mass, the
kilogram.
The performance of CsI photocathodes has been characterized for use with grazing incidence soft x rays. The total electron yield and pulsed quantum efficiency of a CsI photocathode has been measured in a reflection geometry as a function of photon energy (100 eV to 1 keV), angle of incidence, and the electric field between the anode and photocathode. The total electron yield and pulsed quantum efficiency increase as the x-ray penetration depth approaches the secondary electron escape depth. Unit quantum efficiency in a grazing incidence geometry is demonstrated. A weak electric-field dependence is observed for the total yield measurements; while no significant dependence is found for the pulsed quantum efficiency. The effect of the pulse height distribution on the detective quantum efficiency is discussed. Theoretical predictions agree accurately with experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.