The evaluation of heat production from gold nanoparticles (AuNPs) irradiated with radiofrequency (RF) energy has been problematic due to Joule heating of their background ionic buffer suspensions. Insights into the physical heating mechanism of nanomaterials under RF excitations must be obtained if they are to have applications in fields such as nanoparticle-targeted hyperthermia for cancer therapy. By developing a purification protocol which allows for highly-stable and concentrated solutions of citrate-capped AuNPs to be suspended in high-resistivity water, we show herein, for the first time, that heat production is only evident for AuNPs of diameters ≤ 10 nm, indicating a unique size-dependent heating behavior not previously observed. Heat production has also shown to be linearly dependent on both AuNP concentration and total surface area, and severely attenuated upon AuNP aggregation. These relationships have been further validated using permittivity analysis across a frequency range of 10 MHz to 3 GHz, as well as static conductivity measurements. Theoretical evaluations suggest that the heating mechanism can be modeled by the electrophoretic oscillation of charged AuNPs across finite length scales in response to a time-varying electric field. It is anticipated these results will assist future development of nanoparticle-assisted heat production by RF fields for applications such as targeted cancer hyperthermia.
Additive manufacturing is being increasingly used in the fabrication of Ti-6Al-4V parts to combine excellent mechanical properties and biocompatibility with high precision. Unfortunately, due to the build-up of thermal residual stresses and the formation of martensitic structure across a wide range of typical processing conditions, it is generally necessary to use a post-thermal treatment to achieve superior mechanical performance. This investigation aims to obtain a deeper understanding of the micro/nanostructural evolution (a 0 martensite phase decomposition), accounting for the kinetics of phase transformation during the heat treatment of 3D-printed Ti-6Al-4V alloy. As the mechanism of phase transformation and stress relaxation is still ambiguous, in this study the changes in crystal lattice, phase, composition and lattice strain were investigated up to 1000°C using both in situ high temperature X-ray diffraction (XRD) and transmission electron microscopy (TEM). Based on the result a mechanism of phase transformation is proposed, via the accommodation/substitution of Al, V and Ti atoms in the crystal lattice. The proposed mechanism is supported based on elemental concentration changes during heat treatment, in combination with changes in crystal structure observed using the high temperature XRD and TEM measurements. This study provides a deeper understanding on the mechanism of phase transformation through martensitic decomposition, as well as a deeper understanding of the influence of post-thermal treatment conditions on the alloy's crystal structure.
. (2016). Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching. RSC Advances: an international journal to further the chemical sciences, 6 30468-30473.Fabrication and characterisation of GaAs nanopillars using nanosphere lithography and metal assisted chemical etching AbstractWe present a low-cost fabrication procedure for the production of nanoscale periodic GaAs nanopillar arrays, using the nanosphere lithography technique as a templating mechanism and the electrochemical metal assisted etch process (MacEtch). The room-temperature photoluminescence (PL) and Raman spectroscopic properties of the fabricated pillars are detailed, as are the structural properties (scanning electron microscopy) and fabrication process. From our PL measurements, we observe a singular GaAs emission at 1.43 eV with no indications of any blue or green emissions, but with a slight redshift due to porosity induced by the MacEtch process and characteristic of porous GaAs (p-GaAs). This is further confirmed via Raman spectroscopy, where additionally we observe the formation of an external cladding of elemental As around our nanopillar features. The optical emission is enhanced by an order magnitude (~300%) for our nanopillar sample relative to the planar unprocessed GaAs reference. We present a low-cost fabrication procedure for the production of nanoscale periodic GaAs nanopillar arrays, using the nanosphere lithography technique as a templating mechanism and the electrochemical metal assisted etch process (MacEtch). The room-temperature photoluminescence (PL) and Raman spectroscopic properties of the fabricated pillars are detailed, as are the structural properties (scanning electron microscopy) and fabrication process. From our PL measurements, we observe a singular GaAs emission at 1.43 eV with no indications of any blue or green emissions, but with a slight redshift due to porosity induced by the MacEtch process and characteristic of porous GaAs (p-GaAs). This is further confirmed via Raman spectroscopy, where additionally we observe the formation of an external cladding of elemental As around our nanopillar features. The optical emission is enhanced by an order magnitude ($300%) for our nanopillar sample relative to the planar unprocessed GaAs reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.